455 research outputs found

    Photopolymerization of Ceramic Resins by Stereolithography Process: A Review

    Get PDF
    Stereolithography is known as one of the best Additive Manufacturing technologies in terms of geometrical and dimensional precision for polymeric materials. In recent years, a lot of studies have shown that the creation of ceramic resins, through a particular combination of monomeric components and ceramic powders, allows to obtain complex shape geometries thanks to the photopolymerization process. This review highlights the characteristics and properties of ceramic resins, peculiarities of the ceramic stereolithography processes, up to the relationship between the composition of the ceramic resin and the complexity of the post-processing phases. The comparison of different studies allows outlining the most common steps for the production of ceramic resins, as well as the physical and chemical compatibility of the different compounds that must be studied for the good feasibility of the process

    Accuracy of complex internal channels produced by laser powder bed fusion process

    Get PDF
    Additive manufacturing (AM) technology has great potential in manufacturing complex internal channels for several applications such as satellite-communication microwave systems. These systems can have complex shapes and make traditional finishing processes a challenge for additive parts. Therefore, it is desirable that the internal surfaces are as close as possible to the tolerance of the field of application. In this study, a complex component, a unique waveguide device with bending, twisting and filtering functionalities, has been designed and manufactured in AlSi10Mg alloy through laser powder bed fusion (L-PBF) process. Three different prototypes with three different curvature (R of 50 mm, 40 mm and 30 mm), operating in Ku/K band, have been manufactured and tested showing a very good agreement with the desired performances. Using 3D scan data, the internal deviations from the CAD model have been evaluated showing an average deviation of the internal areas of about 0.08 mm, 0.046 mm and 0.023 mm from the CAD model for the R of 50 mm, 40 mm and 30 mm respectively The surface roughness measured in the internal channel is about Ra (arithmetic average roughness) of 8 μm ± 1.3 μm and Rz (average maximum height of the roughness profile) of 62.3 μm ± 0.34 μm

    (+/-)-Gelliusines A and B, two diastereomeric brominated tris-indole alkaloids from a deep water New Caledonian marine sponge (Gellius or Orina sp.)

    Get PDF
    Two new diastereomeric brominated tris-indole alkaloids occurring as enantiomeric pairs, (±)-gelliusine A (I) and its isomer (±)-gelliusine B, have been isolated from a deep water New Caledonian sponge (Gellius or Orina sp.), whose crude ext. exhibited cytotoxicity against KB cells. Their structures were elucidated by spectroscopic methods including one- and two-dimensional NMR spectroscopy. The major compd., I, which showed very weak cytotoxicity, proved to be active at the serotonin receptor

    Probiotics as an emerging therapeutic strategy to treat NAFLD: focus on molecular and biochemical mechanisms.

    Get PDF
    Nonalcoholic fatty liver disease (NAFLD) is currently the most common liver disease worldwide, both in adults and in children. NAFLD is characterized by aberrant lipid storage in hepatocytes (hepatic steatosis) and inflammatory progression to nonalcoholic steatohepatitis. Evidences so far suggest that intrahepatic lipid accumulation does not always derive from obesity. Gut microbiota has been considered as a regulator of energy homeostasis and ectopic fat deposition, suggesting its implications in metabolic diseases. Probiotics are live microbial that alter the enteric microflora and have beneficial effects on human health. Although the molecular mechanisms of probiotics have not been completely elucidated yet, many of their effects have proved to be beneficial in NAFLD, including the modulation of the intestinal microbiota, an antibacterial substance production, an improved epithelial barrier function and a reduced intestinal inflammation. Given the close anatomical and functional correlation between the bowel and the liver, and the immunoregulatory effects elicited by probiotics, the aim of this review is to summarize today's knowledge about probiotics in NAFLD, focusing in particular on their molecular and biochemical mechanisms, as well as highlighting their efficacy as an emerging therapeutic strategy to treat this conditio

    In Situ Thermal Generation of Silver Nanoparticles in 3D Printed Polymeric Structures

    Get PDF
    Polymer nanocomposites have always attracted the interest of researchers and industry because of their potential combination of properties from both the nanofillers and the hosting matrix. Gathering nanomaterials and 3D printing could offer clear advantages and numerous new opportunities in several application fields. Embedding nanofillers in a polymeric matrix could improve the final material properties but usually the printing process gets more difficult. Considering this drawback, in this paper we propose a method to obtain polymer nanocomposites by in situ generation of nanoparticles after the printing process. 3D structures were fabricated through a Digital Light Processing (DLP) system by disolving metal salts in the starting liquid formulation. The 3D fabrication is followed by a thermal treatment in order to induce in situ generation of metal nanoparticles (NPs) in the polymer matrix. Comprehensive studies were systematically performed on the thermo-mechanical characteristics, morphology and electrical properties of the 3D printed nanocomposites

    Failure mode analysis on compression of lattice structures with internal cooling channels produced by laser powder bed fusion

    Get PDF
    Conformal cooling coils have been developed during the last decades through the use of additive manufacturing (AM) technologies. The main goal of this study was to analyze how the presence of an internal channel that could act as a conformal cooling coil could affect compressive strength and quasi-elastic gradient of AlSi10Mg lattice structures produced by laser powder bed fusion (LPBF). Three different configurations of samples were tested in compression at 25 °C and 200 °C. The reference structures were body centered cubic (BBC) in the core of the samples with vertical struts along Z (BCCZ) lattices in the outer perimeter, labelled as NC samples. The main novelty consisted in inserting a straight elliptical channel and a 45° elliptical channel inside the BCCZ lattice structures, labelled as SC and 45C samples respectively. All the samples were then tested in as-built (AB) condition, and after two post process heat treatments, commonly used for AlSi10Mg LPBF industrial components, a stress relieving (SR) and a T6 treatment. NC lattice structures AB exhibited an overall fragile fracture and therefore the SC and 45C configuration samples were tested only after thermal treatments. The test at 25 °C showed that all types of samples were characterized by negligible variations in their quasi-elastic gradients and yield strength. On the contrary, the general trend of stress-strain curves was influenced by the presence of the channel and its position. The test at 200 °C showed that NC, SC and 45C samples after SR and T6 treatments exhibited a metal-foam like deformation

    Butyrate modulating effects on pro-inflammatory pathways in human intestinal epithelial cells

    Get PDF
    Butyrate acts as energy source for intestinal epithelial cells and as key mediator of several immune processes, modulating gene expression mainly through histone deacetylation inhibition. Thanks to these effects, butyrate has been proposed for the treatment of many intestinal diseases. Aim of this study was to investigate the effect of butyrate on the expression of a large series of target genes encoding proteins involved in pro-inflammatory pathways. We performed quantitative real-time-PCR analysis of the expression of 86 genes encoding proteins bearing to pro-inflammatory pathways, before and after butyrate exposure, in primary epithelial cells derived from human small intestine and colon. Butyrate significantly down-regulated the expression of genes involved in inflammatory response, among which nuclear factor kappa beta, interferon-gamma, Toll like 2 receptor and tumour necrosis factor-alpha. Further confirmations of these data, including studies at protein level, would support the use of butyrate as effective therapeutic strategy in intestinal inflammatory disorders

    Effects of the solution and first aging treatment applied to as-built and post-HIP CM247 produced via Laser Powder Bed Fusion (LPBF)

    Get PDF
    In this work CM247LC, a low weldable Ni-Based alloy, was produced using selective laser melting (SLM). Despite the initial process parameter optimization, the low defect volume fraction was still uncompliant with manufacturing standards. This condition is principally caused by the high γ’ volume fraction which strongly affects the alloy weldability. Nonetheless, a crack free condition was eventually achieved applying a γ’-sub-solvus Hot Isostatic Pressing Cycle (HIP) which lowered the defects fraction down to 0.04%. The HIP cycle also demonstrated to play an important role in the stabilization of the microstructure, considerably limiting the carbides coarsening during the following heat treatment. Apart from the effectiveness of the healing process brought by HIP, the material microstructure still needs an optimization process which will be described along this paper. In fact, the Initial microstructure obtained after the printing process (the as-built condition) as well as the one obtained after HIP (post-HIP) won’t meet the desired requirements. Namely, the dendritic and γ’ free microstructure of the asbuilt material or the one with coarse and disordered particles obtained right after HIP, still need a tailored homogenization process. This paper will show how the combined effect of the solution and first aging treatment will profoundly alter the γ’ precipitation. More specifically, here, a new heat treatment recipe was developed to promote the precipitation of ordered cuboidal primary γ’ so as to improve creep and high temperature fatigue resistance. Moreover, the use of a γ’ super-solvus temperature allowed to achieve a γ’ volume fraction as high as 73% reducing its average size to 520 nm. At the same time, such heat treatment caused a profound alteration of the crystalline structures of the material promoting a general grain coarsening and the formation of equiaxial grain
    corecore