7,767 research outputs found

    Why the One Cannot Have Parts: Plotinus on Divine Simplicity, Ontological Independence, and Perfect Being Theology

    Get PDF
    I use Plotinus to present absolute divine simplicity as the consequence of principles about metaphysical and explanatory priority to which most theists are already committed. I employ Phil Corkum’s account of ontological independence as independent status to present a new interpretation of Plotinus on the dependence of everything on the One. On this reading, if something else (whether an internal part or something external) makes you what you are, then you are ontologically dependent on it. I show that this account supports Plotinus’s claim that any entity with parts cannot be fully independent. In particular, I lay out Plotinus’s case for thinking that even a divine self-understanding intellect cannot be fully independent. I then argue that a weaker version of simplicity is not enough for the theist since priority monism meets the conditions of a moderate version of ontological independence just as well as a transcendent but complex ultimate being

    Chemistry in One Dimension

    Full text link
    We report benchmark results for one-dimensional (1D) atomic and molecular systems interacting via the Coulomb operator x1|x|^{-1}. Using various wavefunction-type approaches, such as Hartree-Fock theory, second- and third-order M{\o}ller-Plesset perturbation theory and explicitly correlated calculations, we study the ground state of atoms with up to ten electrons as well as small diatomic and triatomic molecules containing up to two electrons. A detailed analysis of the 1D helium-like ions is given and the expression of the high-density correlation energy is reported. We report the total energies, ionization energies, electron affinities and other interesting properties of the many-electron 1D atoms and, based on these results, we construct the 1D analog of Mendeleev's periodic table. We find that the 1D periodic table contains only two groups: the alkali metals and the noble gases. We also calculate the dissociation curves of various 1D diatomics and study the chemical bond in H2+_2^+, HeH2+^{2+}, He23+_2^{3+}, H2_2, HeH+^+ and He22+_2^{2+}. We find that, unlike their 3D counterparts, 1D molecules are primarily bound by one-electron bonds. Finally, we study the chemistry of H3+_3^+ and we discuss the stability of the 1D polymer resulting from an infinite chain of hydrogen atoms.Comment: 27 pages, 7 figure

    Inferring Robot Task Plans from Human Team Meetings: A Generative Modeling Approach with Logic-Based Prior

    Get PDF
    We aim to reduce the burden of programming and deploying autonomous systems to work in concert with people in time-critical domains, such as military field operations and disaster response. Deployment plans for these operations are frequently negotiated on-the-fly by teams of human planners. A human operator then translates the agreed upon plan into machine instructions for the robots. We present an algorithm that reduces this translation burden by inferring the final plan from a processed form of the human team's planning conversation. Our approach combines probabilistic generative modeling with logical plan validation used to compute a highly structured prior over possible plans. This hybrid approach enables us to overcome the challenge of performing inference over the large solution space with only a small amount of noisy data from the team planning session. We validate the algorithm through human subject experimentation and show we are able to infer a human team's final plan with 83% accuracy on average. We also describe a robot demonstration in which two people plan and execute a first-response collaborative task with a PR2 robot. To the best of our knowledge, this is the first work that integrates a logical planning technique within a generative model to perform plan inference.Comment: Appears in Proceedings of the Twenty-Seventh AAAI Conference on Artificial Intelligence (AAAI-13

    Beneficial effects of childhood selective dorsal rhizotomy in adulthood

    Get PDF
    Background: Selective dorsal rhizotomy (SDR) has been used to treat children with spastic cerebral palsy (CP) for over three decades. However, little is known about the outcomes of childhood SDR in adults.  Objectives: 1) To study the effects of childhood SDR on the quality of life and ambulatory function in adult life. 2) To determine late side effects of SDR in adults.   Methods: Adults (> 17.9 years) who underwent SDR in childhood (2 - 17.9 years) between 1987 and 2013 were surveyed in 2015. Patients completed a survey, including questions on demographic information, quality of life, health, surgical outcomes, motor function, manual ability, pain, braces/orthotics, post-SDR treatment, living situation, education level, work status, and side effects of SDR.  Results: In our study population of 294 patients (18.0 - 37.4 years), patients received SDR during the ages of 2.0 - 17.9 years and were followed up 2.2 to 28.3 years after surgery. Eighty-four percent had spastic diplegia, 12% had spastic quadriplegia, and 4% had spastic triplegia. The majority (88%) of patients reported improved post-SDR quality of life and 1% considered the surgery detrimental. Most (83%) would recommend the procedure to others and 3% would not. However, patients who would not recommend SDR to others ambulated with a walker or were not ambulatory at all prior to SDR. The majority (83%) of patients improved (30%) or remained stable (53%) in ambulation. Twenty-nine percent of patients reported pain, mostly in the back and lower limbs, with a mean pain level of 4.4 ± 2.4 on the Numeric Pain Rating Scale (NPRS). Decreased sensation in small areas of the lower limbs was reported by 8% of patients, though this did not affect daily life. Scoliosis was diagnosed in 28%, with 40% of these patients pursuing treatment. Whether scoliosis was related to SDR is not clear, though scoliosis is known to occur in patients with CP and also in the general population. Only 4% of patients underwent spinal fusion.  Orthopedic surgeries were pursued by 59% of patients. The most common orthopedic surgeries were hamstring lengthenings (31%), Achilles tendon lengthenings (18%), adductor lengthenings (16%), and derotational osteotomies (16%). Twenty-four percent of all patients later underwent hip surgery and 8% had surgeries on their knees.  Conclusion: Results of this study indicate that the beneficial effects of childhood SDR extend to adulthood quality of life and ambulatory function without late side effects of surgery

    Formal Reasoning Using an Iterative Approach with an Integrated Web IDE

    Full text link
    This paper summarizes our experience in communicating the elements of reasoning about correctness, and the central role of formal specifications in reasoning about modular, component-based software using a language and an integrated Web IDE designed for the purpose. Our experience in using such an IDE, supported by a 'push-button' verifying compiler in a classroom setting, reveals the highly iterative process learners use to arrive at suitably specified, automatically provable code. We explain how the IDE facilitates reasoning at each step of this process by providing human readable verification conditions (VCs) and feedback from an integrated prover that clearly indicates unprovable VCs to help identify obstacles to completing proofs. The paper discusses the IDE's usage in verified software development using several examples drawn from actual classroom lectures and student assignments to illustrate principles of design-by-contract and the iterative process of creating and subsequently refining assertions, such as loop invariants in object-based code.Comment: In Proceedings F-IDE 2015, arXiv:1508.0338

    The Contract for College

    Get PDF
    Rising college costs, combined with major policy changes in financial aid, have made college less affordable for today's generation of young people. The Contract for College would unify the existing three strands of federal financial aid--grants, loans and work-study--into a coherent, guaranteed financial aid package for students

    Uniform Electron Gases. II. The Generalized Local Density Approximation in One Dimension

    Get PDF
    We introduce a generalization (gLDA) of the traditional Local Density Approximation (LDA) within density functional theory. The gLDA uses both the one-electron Seitz radius \rs and a two-electron hole curvature parameter η\eta at each point in space. The gLDA reduces to the LDA when applied to the infinite homogeneous electron gas but, unlike the LDA, is is also exact for finite uniform electron gases on spheres. We present an explicit gLDA functional for the correlation energy of electrons that are confined to a one-dimensional space and compare its accuracy with LDA, second- and third-order M{\o}ller-Plesset perturbation energies and exact calculations for a variety of inhomogeneous systems.Comment: 26 pages, 2 figures, accepted for publication in Journal of Chemical Physic
    corecore