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We introduce a generalization (gLDA) of the traditional Local Density Approximation (LDA) within
density functional theory. The gLDA uses both the one-electron Seitz radius rs and a two-electron
hole curvature parameter η at each point in space. The gLDA reduces to the LDA when applied to
the infinite homogeneous electron gas but, unlike the LDA, it is also exact for finite uniform electron
gases on spheres. We present an explicit gLDA functional for the correlation energy of electrons that
are confined to a one-dimensional space and compare its accuracy with LDA, second- and third-order
Møller-Plesset perturbation energies, and exact calculations for a variety of inhomogeneous systems.
© 2014 AIP Publishing LLC. [http://dx.doi.org/10.1063/1.4867910]

I. LOCAL DENSITY APPROXIMATION

The local density approximation (LDA), unlike most
of the “sophisticated” density functional approximations in
widespread use today, is truly a first-principles quantum me-
chanical method.1 It is entirely non-empirical, depending in-
stead on the properties of one of the great paradigms of mod-
ern physics: the infinite homogeneous electron gas (HEG).2, 3

Application of the LDA is straightforward, at least in princi-
ple. Although the electronic charge density ρ(r) in any real
system is non-uniform, the LDA proceeds by assuming that
the charge in an infinitesimal volume element around the
point r behaves like a locally homogeneous gas of density
ρ(r), and adds all of the resulting contributions together. This
implicitly assumes that the infinitesimal contributions are in-
dependent (which is undoubtedly not the case) but then re-
quires only that the properties of the HEG be known for all
values of ρ.

The density of a HEG is commonly given by ρ (the num-
ber of electrons per unit volume) or the Seitz radius rs and
these equivalent parameters are related by

rDs ρ = π−D/2�(D/2 + 1), (1)

where D is the dimensionality of the space in which the elec-
trons move. In terms of these, the LDA correlation functional
is

ELDA
c =

∫
ρ(r)εc(rs(r)) dr, (2)

where the correlation kernel εc(rs) is the reduced (i.e., per
electron) correlation energy of the HEG with Seitz radius rs.

In high-density HEGs (i.e., rs � 1), the kinetic energy
dominates the Hamiltonian and the Coulomb repulsion be-
tween the electrons can be treated via perturbation theory.
This has facilitated investigations of εc(rs) in 3D4–19 and
2D20–29 but, because the Coulomb operator is so strong in 1D

a)Electronic mail: pf.loos@anu.edu.au
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that two electrons cannot touch, the 1D gas has received less
attention.30–32

In low-density HEGs (i.e., rs � 1), the potential energy
dominates, the electrons localize into a Wigner crystal and
strong-coupling methods can be used to find asymptotic ex-
pansions of εc(rs). Here, too, the 3D,33–35 2D,36, 37 and 1D30

HEGs have all been studied.
For intermediate densities, the best estimates of εc(rs)

come from Quantum Monte Carlo (QMC) calculations, as pi-
oneered by Ceperley and refined by several other groups.38–53

By combining these with the high- and low-density results,
various groups54–57 have constructed interpolating functions
that allow εc(rs) to be estimated rapidly for any value of rs.

Unfortunately, this approach is flawed, for the correlation
energy of a uniform electron gas depends on more than just its
rs value.58 We have therefore argued that εc(rs) should be gen-
eralized to εc(rs, η), where the parameter η measures the two-
electron density. Although not mathematically mandated,59

we prefer that η, like rs, be a local quantity. In Sec. II, we
propose a definition for η inspired by a number of previous
researchers.60–64

To learn more about the two-parameter kernel, we have
turned to the finite uniform electron gases (UEGs) formed
when n electrons are confined to a D-sphere.65–72 In Sec. III,
we report accurate values of η and εc(rs, η) for electrons on
a 1-sphere, systems that we call “n-ringium.” In Sec. IV, we
devise three functionals to approximate these results and in
Sec. V, we test two of these on small 1D systems. Atomic
units are used throughout.

II. HOLE CURVATURE

Suppose that an electron lies at a point r. The probability
P (u|r) that a second electron lies at r + u is given60, 61, 73–82

by the conditional intracule

P (u|r) = ρ2(r, r + u)/ρ(r) = [ρ(r + u) + ρxc(r, r + u)] /2,

(3)
where ρxc is the exchange-correlation hole1 and

0021-9606/2014/140(18)/18A524/11/$30.00 © 2014 AIP Publishing LLC140, 18A524-1
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ρ2(r1, r2) = n(n − 1)
∫

|�|2 ds1ds2dr3 . . . drn (4)

is the spinless second-order density matrix.83 For fixed r, we
have the normalization∫

P (u|r) du = n − 1. (5)

Because the Laplacian ∇2
uP (0|r) measures the tightness of

the hole around the electron at r and has dimensions of
1/(length)D+2, we can use the dimensionless hole curvature

η(r) = CD rs(r)D+2 ∇2
uP (0|r) (6)

to measure the proximity of other electrons to one at r. (We
will fix the coefficient CD in Sec. III A.) It is difficult to find
this Laplacian for the exact wave function but, at the Hartree-
Fock (HF) level, it involves simple sums over the occupied
orbitals, viz.

∇2
uP (0|r) = 2

occ∑
i

|∇ψi |2 − |∇ρ|2
2ρ

(7)

and we will therefore employ HF curvatures henceforth.84

The interesting connection between the curvature and the ki-
netic energy density62 is worth noting.

III. CALCULATIONS ON n-RINGIUM

A. Density and curvature

The HF orbitals of the ground state of n electrons on a
ring of radius R are complex exponentials71, 72

ψm(θ ) = (2πR)−1/2 exp(imθ ), (8)

m = −n − 1

2
,−n − 3

2
, . . . ,+n − 3

2
,+n − 1

2
, (9)

and, because of the symmetry of the system, the density and
Seitz radius

ρ = n/(2πR), (10)

rs = πR/n (11)

do not depend on θ . The hole curvature is also constant and,
using (6) and (7), one finds

η = 2C1(πR/n)3
occ∑
m

m2/(2πR3)

= C1(π2/12)(1 − 1/n2). (12)

If we choose C1 = 12/π2 so that η = 1 for the 1D HEG (i.e.,
∞-ringium), we obtain

η = 1 − 1/n2. (13)

In general, requiring that η = 1 in the D-dimensional HEG
leads (via Fermi integration) to

CD = (1 + 2/D)πD/2/8

�(1 + D/2)1+4/D (14)

and the particular values C2 = π /4 and C3 = (10/27)(4π /3)1/3.

B. Correlation energy

The Hamiltonian for n electrons on a ring is

Ĥ = T̂ + V̂ = −1

2

n∑
i=1

∇2
i +

n∑
i<j

r−1
ij , (15)

where rij is the distance (across the ring) between electrons i
and j. As noted previously,72 the energy is independent of the
spin-state and so we assume that all electrons are spin-up. The
exact wave function can then be written as � = F
, where
the correlation factor

F =
∞∑

a=1

xafa (16)

is a sum of functions fa which are ma-term symmetric polyno-
mials in the rij (see Table I) and 
 is the HF wave function72


 = 1√
n!(2π )n

n∏
i<j

r̂ij . (17)

Judicious integration by parts allows us to partition the
total energy

E = 〈�|Ĥ |�〉
〈�|�〉 (18)

into the HF energy72

EHF = THF + VHF

= n(n2 − 1)

24R2
+ 1

4πR

(
n∑

k=1

4n2 − 1

2k − 1
− 3n2

)
(19)

TABLE I. Definitions fa and number of terms ma in the correlation factors
of degree 0, 1, 2, 3.

Degree 0 Degree 1 Degree 2 Degree 3

f1 m1 f2 m2 f3. . . f5 m3. . . m5 f6. . . f13 m6. . . m13

1 1
∑

rij nC2
∑

r2
ij nC2

∑
r3
ij nC2∑

rijrik 6 nC3
∑

rijrikrjk 6 nC3∑
rijrkl 6 nC4

∑
r2
ij rik 18 nC3∑

r2
ij rkl 18 nC4∑

rijrikril 24 nC4∑
rijrikrjl 72 nC4∑
rijrikrlm 180 nC5∑
rijrklrmn 90 nC6

Total 1 1
∑

rij nC2 (
∑

rij)2 (nC2)2 (
∑

rij)3 (nC2)3
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TABLE II. η and −εc(rs, η) (mEh per electron) for the ground state of n electrons on a ring.

rs

n η 0 1/10 1/5 1/2 1 2 5 10 20 50 100

1 0 0 0 0 0 0 0 0 0 0 0 0
2 3/4 13.212 12.985 12.766 12.152 11.250 9.802 7.111 4.938 3.122 1.533 0.848
3 8/9 18.484 18.107 17.747 16.755 15.346 13.179 9.369 6.427 4.030 1.965 1.083
4 15/16 21.174 20.700 20.250 19.027 17.324 14.765 10.391 7.087 4.425 2.150 1.184
5 24/25 22.756 22.216 21.706 20.332 18.444 15.648 10.947 7.441 4.636 2.249 1.237
6 35/36 23.775 23.190 22.638 21.161 19.148 16.196 11.285 7.655 4.774 2.307 1.268
7 48/49 24.476 23.855 23.273 21.723 19.618 16.557 11.509 7.795 4.844 2.345 1.289
8 63/64 24.981 24.328 23.729 22.122 19.951 16.813 11.664 7.890 4.901 2.370 1.302
9 80/81 25.360 24.686 24.067 22.415 20.199 17.001 11.777 7.960 4.941 2.389 1.312
10 99/100 25.651 24.960 24.327 22.644 20.386 17.143 11.857 8.013 4.973 2.404 1.320
∞ 1 27.416 26.597 25.91 23.962 21.444 17.922 12.318 8.292 5.133 2.476 1.358

and the correlation energy

Ec = 〈
 | 1
2∇F · ∇F + (V̂ − VHF)F 2 | 
〉

〈
|F 2|
〉 . (20)

Ec can be minimized either by QMC methods52 or via the
secular equation

(T + V)x = Ec S x, (21)

where the overlap, kinetic, and Coulomb matrix elements

Sab = 〈
|fafb|
〉, (22a)

Tab = 1

2
〈
|∇fa · ∇fb|
〉, (22b)

Vab = 〈
|faV̂ fb|
〉 − VHFSab (22c)

can be found analytically in Fourier space (Appendix A). We
have used the CASINO QMC package85 and, where possible,
the Knowles–Handy full CI program to confirm results.86, 87

Table II shows the resulting near-exact correlation ener-
gies for ground-state n-ringium. (Where these energies differ
from those in Table VI of Ref. 72, the new values are supe-
rior.) The fact that the εc values in a given column are not
equal demonstrates that the correlation energy of a UEG is not
determined by its rs value alone.58 Moreover, the variations in
εc for a given rs are large: the n = 2 values, for example, are
only about half of the n = ∞ values, implying that the correla-
tion energy of a few-electron system is grossly overestimated
by the LDA functional which is based on the HEG.

IV. GENERALIZED LOCAL DENSITY APPROXIMATION

In the LDA, the correlation contribution is estimated
from rs alone, according to Eq. (2). However, the fact that
UEGs with the same rs, but different η, have different en-
ergies compels us to devise a Generalized Local Density
Approximation (GLDA) wherein we write

EGLDA
c =

∫
ρ(r) εc(rs(r), η(r)) dr, (23)

where the correlation kernel εc(rs, η) is the reduced correla-
tion energy of a UEG with Seitz radius rs and curvature η.

For present purposes, we will use rs and η values from the
HF, rather than the exact, wave function.

One might think that the kernel could be constructed
by fitting the results in Table II but these data allow us to
construct εc(rs, η) only for η ≤ 1. To construct the rest of
the kernel will require accurate correlation energies for uni-
form gases with high curvatures (η > 1) but, although these
arise in excited states of n-ringium, this raises some funda-
mental questions which lie outside the scope of the present
manuscript and will be discussed elsewhere.

A. High densities

Rayleigh-Schrödinger perturbation theory for n-ringium
yields the high-density expansion

εc(rs, n) = α2(n) + α3(n)rs + α4(n)r2
s + . . . , (rs � 1).

(24)

The leading coefficient72 is

α2(n) = −1

n

occ∑
a<b

∞∑
r=rmin

V 2
r−a,r−b

(r − a)(r − b)

= − π2

360
+ a ln2 n + b ln n + c

n2
+ . . . (25)

but, if we fit a truncated version of this series, while ensuring
that α2 vanishes for one electron, we obtain the approximation

α̃2(n) = − π2

360

(
1 − 1

n2

)
+ ln2 n + 3 ln n

87n2
(1 ≤ n < ∞),

(26)

which can be rewritten in terms of the curvature, using
Eq. (13) to obtain

α̃2(η) = − π2

360
η + (1 − η)

ln2(1 − η) − 6 ln(1 − η)

348
(0 ≤ η ≤ 1). (27)

The accuracy of this approximation is shown in columns 2
and 3 of Table III.
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TABLE III. Application of the ε̃c(rs , η) approximation to the data in Table II.

Max errors

n η −α2 −α̃2 −β2 −β̃2 γ̃ % Abs (mEh)

2 3/4 0.01321 0.01321 0.1073 0.1050 1.9792 1.0 0.10
3 8/9 0.01848 0.01862 0.1361 0.1349 2.1375 0.9 0.13
4 15/16 0.02117 0.02133 0.1483 0.1475 2.2054 0.8 0.16
5 24/25 0.02276 0.02291 0.1546 0.1541 2.2431 0.8 0.18
6 35/36 0.02378 0.02391 0.1584 0.1580 2.2670 0.7 0.14
7 48/49 0.02448 0.02460 0.1608 0.1605 2.2837 0.8 0.16
8 63/64 0.02498 0.02509 0.1624 0.1622 2.2958 0.7 0.16
9 80/81 0.02536 0.02546 0.1636 0.1635 2.3051 0.7 0.15
10 99/100 0.02565 0.02574 0.1645 0.1644 2.3125 0.8 0.20
∞ 1 0.02742 0.02742 0.1689 0.1689 2.3750 0.8 0.13

B. Low densities

Strong-coupling perturbation theory for n-ringium yields
the low-density expansion

εc(rs, n) = β2(n)

rs

+ β3(n)

r
3/2
s

+ β4(n)

r2
s

+ . . . (rs � 1). (28)

The leading coefficient is the difference between the Wigner
crystal Coulomb coefficient

EW
V (n) = π

4n

n−1∑
k=1

csc(kπ/n)

= 1

2

∫ 1

0

1 − xn−1

1 − x

dx

1 + xn

= ln n

2
+ γ + ln(2/π )

2
− π2

144n2
+ . . . (29)

and the HF Coulomb coefficient

EHF
V (n) =

(
1 − 1

4n2

) n∑
k=1

1

2k − 1
− 3

4

=
(
1− 1

4n2

)(
ln n

2
+ γ + 2 ln 2

2
+ 1

48n2
+ . . .

)
− 3

4
.

(30)

It follows that

β2(n) = 3

4
− ln 2π

2
+ ln n

8n2
+ 18γ + 36 ln 2 − 3 − π2

144n2
+ . . .

(31)
but, if we truncate this series after the n−2 term and modify
it to ensure that β2 vanishes for one electron, we obtain the
approximation

β̃2(n) =
(

3

4
− ln 2π

2

) (
1 − 1

n2

)
+ ln n

8n2
(1 ≤ n < ∞),

(32)

which can be rewritten in terms of the curvature, using
Eq. (13) to obtain

β̃2(η) =
(

3

4
− ln 2π

2

)
η − (1 − η) ln(1 − η)

16
(0 ≤ η ≤ 1).

(33)

The accuracy of this approximation is shown in columns 4
and 5 of Table III.

C. Intermediate densities

How can we model εc(rs, η) for fixed η? Ideally, we
would like a function that reproduces the behaviors of
Eqs. (24) and (28) and interpolates accurately between these
limits. However, for practical reasons, we will content our-
selves with a function that approaches α̃2(η) for small rs, be-
haves like β̃2(η)/rs for large rs, and changes monotonically
between these.

Although we could use robust interpolation,88 the hyper-
geometric function89

f (r) = αF

(
1,

3

2
, γ,

2α(1 − γ )

β
r

)
(34)

∼
{

α + O(r) r � 1

β/r + O(r−3/2) r � 1
(35)

possesses all of the desired features and we therefore adopt
the approximate kernel

ε̃c(rs, η) = α̃2(η)F

(
1,

3

2
, γ̃ (η),

2α̃2(η)(1 − γ̃ (η))

β̃2(η)
rs

)
.

(36)
Table III shows that this kernel models the energies in
Table II well if we choose

γ̃ (n) = 19

16

(
4n − 3

2n − 1

)
(1 ≤ n < ∞) (37)

or, equivalently,

γ̃ (η) = 19

16

(
4 − 3

√
1 − η

2 − √
1 − η

)
(0 ≤ η ≤ 1). (38)

This reproduces the Table II data to within a relative error of
1% and absolute error of 0.20 mEh.

D. The LDA1, GLDA1, and gLDA1 functionals

We can now consider three approximate kernels for cor-
relation in 1D systems. The first is the LDA1 kernel, which is
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defined by

εLDA1
c (rs) = αF

(
1,

3

2
, γ̃ ,

2α(1 − γ̃ )

β
rs

)
, (39)

where α = −π2/360, β = 3/4 − (ln 2π )/2, and γ̃ = 19/8.
This underpins the traditional LDA and, by construction, it is
exact (within fitting errors) for the 1D HEG or, equivalently,
for ∞-ringium. It is independent of the hole curvature η.

The second is the GLDA1 kernel, which is defined by

εGLDA1
c (rs, η) = α̃2(η)F

(
1,

3

2
, γ̃ (η),

2α̃2(η)(1 − γ̃ (η))

β̃2(η)
rs

)
,

(40)
where α̃2(η), β̃2(η), and γ̃ (η) are defined in Eqs. (27), (33),
and (38). Unfortunately, because of a lack of information
about high-curvature UEGs, these three equations are not de-
fined for η > 1 and thus, at this time, the GLDA1 is defined
only for systems where η ≤ 1 at all points. Completing the
definition of the GLDA1 is an important topic for future work.

The third is the gLDA1 kernel, a partially corrected LDA,
which is defined by

εgLDA1
c (rs, η) =

{
εGLDA1
c (rs, η) η < 1

εLDA1
c (rs) η ≥ 1

. (41)

When applied to UEGs with η ≥ 1, the gLDA1 and LDA1
kernels are, of course, identical. However, when applied to
gases with η < 1, they behave differently and, by construc-
tion, the gLDA1 kernel is exact (within fitting errors) for any
n-ringium.

The gLDA1 kernel defaults back to the LDA1 kernel at
points where η > 1 but we cannot predict a priori whether this
will cause it to underestimate or to overestimate the GLDA.
If the monotonic increase in the magnitude of the kernel be-
tween η = 0 and η = 1 continues beyond η = 1, then the
gLDA1 kernel (which assumes that the kernel is constant
beyond η = 1) will underestimate the GLDA1 kernel and
consequently underestimate the magnitude of the correlation
energies in systems with high-curvature regions.

Until the true kernel for η > 1 is known, we cannot draw
any firm conclusions about the accuracy of GLDA1. However,
it is reasonable to conjecture that even the imperfect gLDA1
may be superior to LDA1 for density functional theory (DFT)
calculations on inhomogeneous 1D systems and we now ex-
plore this through some preliminary validation studies.

V. VALIDATION

Having defined the gLDA1 functional, we turn now to its
validation. The functional is exact by construction for any n-
ringium, so we require systems with non-uniform densities.
There is no standard set of 1D models with accurately known
correlation energies, so it was necessary to devise our own
and we chose the ground states of n electrons in a 1D box of
length L = π (a family that we call the n-boxiums) and of
n electrons in a 1D harmonic well with force constant k = 1
(a family that we call the n-hookiums). Whereas the HOMO–
LUMO gap in n-boxium increases roughly linearly with n,

TABLE IV. Basis set truncation errors �EM for the energies in two-electron
systems.

MP2 MP3 FCI

2-ringium O(M−3) O(M−3) O(M−3)
2-boxium O(M−3) O(M−3) O(M−3)
2-hookium O(M−3/2) O(M−3/2/ln M) O(M−3/2)

that in n-hookium slowly decreases. We therefore regard them
as “large-gap” and “small-gap” systems, respectively.

Given that the fitting errors (Table III) in the gLDA1
functional can be of the order of 0.1 mEh, we aimed to ob-
tain the energies of the n-boxium and n-hookium to within
0.1 mEh of their complete basis set (CBS) limits. This is
easily achieved for the HF, LDA1, and gLDA1 energies, be-
cause they converge exponentially90–92 with the size M of the
one-electron basis, but it is less straightforward for traditional
post-HF energies.

We analysed the convergence behavior (see Appendix B)
of Møller-Plesset perturbation (MP2 and MP3) and full con-
figuration interaction (FCI) energies in 2-ringium, 2-boxium,
and 2-hookium and our results are summarised in Table IV.
From these, we devised appropriate extrapolation formulae
and applied these to the energies obtained with our largest
basis sets. We also used QMC calculations85 to assess the ac-
curacy of our extrapolated FCI energies.

Tables V and VI show the energies obtained for 5-boxium
and 5-hookium, respectively, as the basis set size increases
from M = 5 to M = 30. The three components of the third-
order energy are separated because of their different conver-
gence behaviors. Table VII summarizes our best estimates
of the HOMO–LUMO gaps, together with the HF, LDA1,
gLDA1, MP2, MP3, and FCI energies, for n-boxium and
n-hookium with n = 2, 3, 4, or 5.

A. n-boxium

The 2-boxium system (albeit with length L = 3) was
studied in a basis of delta functions by Salter et al.93 and,
using 804 609 basis functions, they obtained energies within
roughly 10 μEh of the exact values. The present work is the
first study of n-boxium with n ≥ 3.

The orbitals of 1-boxium are

φm(x) =
{√

2/π cos mx m is odd√
2/π sin mx m is even

(m = 1, 2, 3, . . .)

(42)

and the first M of these form a convenient orthonormal ba-
sis for expanding the HF orbitals in n-boxium. The anti-
symmetrized two-electron integrals 〈μσ ||νλ〉 can be found
in terms of the Sine and Cosine Integral functions89 and
we have used these to perform SCF calculations with up
to M = 30 basis functions. Our convergence criterion was
max |[P, F]| < 10−5.
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TABLE V. Basis set convergence of EHF (in Eh) and Ec energies (in mEh) in 5-boxium.

E(3) components

M EHF −ELDA1
c −E

gLDA1
c −EMP2

c O4V 2 O3V 3 O2V 4 −EFCI
c

5 40.990 531 126.517 68.858 0 0 0 0 0
6 40.855 806 126.499 63.929 0 0 0 0 0
7 40.807 556 126.486 63.678 16.020 1.129 − 3.512 0.804 17.840
8 40.798 066 126.482 63.314 28.753 1.728 − 6.379 1.683 32.157
9 40.793 901 126.478 63.208 38.619 2.085 − 8.570 2.475 43.234
10 40.793 518 126.478 63.207 45.564 2.276 − 10.046 3.104 50.937
11 40.792 520 126.477 63.067 49.972 2.371 − 10.871 3.577 55.640
12 40.792 237 126.477 63.024 53.055 2.426 − 11.394 3.932 58.850
13 40.792 064 126.477 63.026 55.272 2.458 − 11.729 4.203 61.102
14 40.792 057 126.477 63.031 56.876 2.478 − 11.939 4.411 62.682
15 40.792 051 126.477 63.019 58.059 2.491 − 12.071 4.572 63.815
16 40.792 051 126.477 63.017 58.946 2.499 − 12.157 4.699 64.646
17 40.792 049 126.477 63.026 59.624 2.505 − 12.214 4.799 65.271
18 40.792 049 126.477 63.027 60.151 2.509 − 12.254 4.880 65.750
19 40.792 049 126.477 63.028 60.568 2.512 − 12.282 4.945 66.124
20 40.792 048 126.477 63.028 60.901 2.514 − 12.302 4.998 66.420
21 40.792 048 126.477 63.029 61.170 2.515 − 12.317 5.042 66.658
22 40.792 048 126.477 63.029 61.391 2.516 − 12.328 5.079 66.852
23 40.792 048 126.477 63.029 61.574 2.517 − 12.337 5.110 67.011
24 40.792 048 126.477 63.029 61.726 2.517 − 12.343 5.136 67.143
25 40.792 048 126.477 63.029 61.854 2.518 − 12.349 5.158 67.253
26 40.792 048 126.477 63.029 61.963 2.518 − 12.353 5.176 67.346
27 40.792 048 126.477 63.029 62.055 2.519 − 12.356 5.193 67.425
28 40.792 048 126.477 63.029 62.134 2.519 − 12.358 5.207 67.493
29 40.792 048 126.477 63.029 62.203 2.519 − 12.360 5.219 67.551
30 40.792 048 126.477 63.029 62.262 2.519 − 12.362 5.230 67.601

TABLE VI. Basis set convergence of EHF (in Eh) and Ec energies (in mEh) in 5-hookium.

E(3) components

M EHF −ELDA1
c −E

gLDA1
c −EMP2

c O4V 2 O3V 3 O2V 4 −EFCI
c

5 19.649 014 116.419 75.381 0 0 0 0 0
6 19.353 767 115.709 60.013 0 0 0 0 0
7 19.180 033 114.892 64.207 18.983 2.783 − 7.833 1.952 23.103
8 19.171 222 114.736 63.602 27.047 3.466 − 11.252 2.972 33.352
9 19.167 260 114.619 63.990 33.786 4.058 − 14.364 4.077 42.140
10 19.165 782 114.658 63.679 37.870 4.298 − 16.063 4.812 47.219
11 19.165 244 114.680 63.512 41.400 4.488 − 17.523 5.434 51.621
12 19.165 079 114.681 63.381 44.276 4.633 − 18.697 5.973 55.159
13 19.164 701 114.684 63.163 46.478 4.729 − 19.539 6.417 57.776
14 19.164 677 114.685 63.238 48.459 4.813 − 20.301 6.807 60.137
15 19.164 499 114.687 63.059 49.999 4.870 − 20.854 7.137 61.905
16 19.164 467 114.687 63.063 51.368 4.919 − 21.340 7.428 63.459
17 19.164 400 114.687 62.993 52.493 4.956 − 21.717 7.679 64.704
18 19.164 370 114.687 62.957 53.476 4.987 − 22.036 7.901 65.768
19 19.164 342 114.687 62.940 54.317 5.012 − 22.297 8.097 66.658
20 19.164 323 114.687 62.917 55.049 5.032 − 22.515 8.271 67.417
21 19.164 309 114.688 62.899 55.688 5.049 − 22.698 8.427 68.066
22 19.164 299 114.688 62.897 56.250 5.063 − 22.851 8.567 68.623
23 19.164 291 114.688 62.885 57.746 5.075 − 22.981 8.692 69.105
24 19.164 287 114.688 62.889 57.187 5.085 − 23.091 8.806 69.525
25 19.164 283 114.688 62.885 57.579 5.094 − 23.185 8.909 69.891
26 19.164 281 114.688 62.888 57.931 5.101 − 23.266 9.003 70.214
27 19.164 279 114.688 62.897 58.248 5.108 − 23.335 9.088 70.500
28 19.164 278 114.688 62.898 58.534 5.113 − 23.396 9.167 70.754
29 19.164 278 114.688 62.903 58.793 5.118 − 23.448 9.239 70.982
30 19.164 277 114.688 62.903 59.029 5.123 − 23.495 9.305 71.186
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TABLE VII. EHF and HOMO–LUMO gap (in Eh) and Ec (in mEh) in n-boxium and n-hookium.

n-boxium (L = π ) n-hookium (k = 1)

n = 2 n = 3 n = 4 n = 5 n = 2 n = 3 n = 4 n = 5

EHF 3.48451 10.37969 22.42489 40.79205 2.74367 6.63671 12.12335 19.16428
H-L gap 4.01 5.28 6.47 7.61 1.75 1.72 1.69 1.67
−ELDA1

c 46.1 72.5 99.4 126.5 42.2 65.9 90.1 114.7

−E
gLDA1
c 11.0 26.3 44.0 63.0 12.7 28.0 44.9 62.9

−EMP2
c 8.3 23.1 41.8 62.8 10.8 26.0 43.7 63.0

−EMP3
c 9.5 25.6 45.4 67.3 12.7 30.0 49.8 71.1

−EFCI
c 9.8 26.2 46.1 68.0 13.5 31.8 52.4 74.3

We first discuss 2-boxium. Choosing M = 8 yields the
HF orbitals

ψ1(x) = 0.994844 φ1(x) − 0.101256 φ3(x) − 0.005729 φ5(x)

−0.000044 φ7(x), (43a)

ψ2(x) = 0.999715 φ2(x) − 0.023850 φ4(x) + 0.000728 φ6(x)

−0.000176 φ8(x), (43b)

and Fig. 1 reveals that the density ρ has maxima at x ≈ ±π /4,
indicating that an electron is likely to be found in these re-
gions. LDA1 interprets these maxima as the most strongly
correlated regions in the well and, through Eqs. (2) and (39),
predicts the correlation energy

ELDA1
c =

∫ π/2

−π/2
ρ(x)εLDA1

c (rs) dx = −46.1 mEh. (44)

In contrast, because the hole curvature η is strongly peaked at
the center and edges of the box and is small near the density
maxima, gLDA1 identifies the center of the box as the most
correlated region and Eqs. (23) and (41) predict the much
smaller correlation energy

EgLDA1
c =

∫ π/2

−π/2
ρ(x)εgLDA1

c (rs, η) dx = −11.0 mEh. (45)

LDA1 and gLDA1 offer very different qualitative and quan-
titative descriptions of 2-boxium, but both perturbation the-
ory (EMP2

c = −8.33 mEh and EMP3
c = −9.45 mEh) and near-

exact calculations (EFCI
c = −9.82 mEh) support the gLDA1

picture.

We have also performed HF, LDA1, gLDA1, MP2, MP3,
and FCI calculations on 3-, 4-, and 5-boxium and the den-
sity and curvature for 5-boxium are shown on the right of
Fig. 1. Both functions oscillate much more rapidly but with
much smaller amplitude than in 2-boxium, and it is easy
to foresee that, as the number of electrons becomes large,
both the density and the curvature will become increasingly
uniform.

The convergence of the 5-boxium energies is shown in
Table V and confirms the theoretical predictions of Table IV.
The LDA1 energies, which depend only on the density
ρ(x), converge rapidly, changing by less than 1 μEh beyond
M = 11. The HF and gLDA energies, which depend on
the orbitals (rather than the density) converge more slowly,
achieving 1 μEh convergence around M = 20. Because
the occupied orbitals converge more rapidly than the virtual
ones,94 the O4V 2 component of MP3 converges almost as
fast as HF, the O3V 3 component (which is negative) con-
verges more slowly, and the O2V 4 component (which is posi-
tive) even more slowly.95 Because of the resulting differential
cancellation,96, 97 the total 3rd-order contribution initially be-
comes more negative, reaches a minimum at M = 13, and
rises thereafter. The MP2 energy is the most slowly converg-
ing, and changes by 60 μEh between M = 29 and M = 30.
It is interesting to note the almost perfectly linear growth of
the third-order energies. Because the n-boxiums are large-gap
systems, MP2 and MP3 work well, recovering more than 92%
and 99% of the correlation energy in 5-boxium.

Our best estimates of the CBS limit HF and correlation
energies are summarized in the left half of Table VII. Because
LDA1 operates without the benefit of curvature information,
it gravely overestimates the correlation energy, by between a

FIG. 1. HF density ρ(x) (blue) and curvature η(x) (red) in 2-boxium (left) and 5-boxium (right)
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FIG. 2. HF density ρ(x) (blue) and curvature η(x) (red) in 2-hookium (left) and 5-hookium (right).

factor of five (for 2-boxium) and a factor of just under two
(for 5-boxium). In contrast, gLDA1 is within 12% of the true
correlation energy for all n-boxiums studied.

B. n-hookium

Electrons in 3D harmonic wells have been studied by nu-
merous authors98–112 but this is the first investigation of n elec-
trons in a 1D harmonic well. The orbitals of 1-hookium are

φm(x) = Hm−1(x) exp(−x2/2)√
π1/22m−1(m − 1)!

(m = 1, 2, 3, . . .) (46)

and the first M of these form a convenient orthonormal ba-
sis for expanding the HF orbitals in n-hookium. The anti-
symmetrized two-electron integrals 〈μσ ||νλ〉 can be found in
closed form (e.g., see Appendix B) and we have used these to
perform SCF calculations with up to M = 30 basis functions.
Our convergence criterion was max |[P, F]| < 10−5.

We first discuss 2-hookium. Choosing M = 8 yields the
HF orbitals

ψ1(x) = 0.989962 φ1(x) + 0.139577 φ3(x) − 0.021464 φ5(x)

+0.005740 φ7(x), (47a)

ψ2(x) = 0.997679 φ2(x) + 0.067586 φ4(x) − 0.008026 φ6(x)

+0.001894 φ8(x), (47b)

and Fig. 2 reveals that the density and curvature are softened
versions of those in 2-boxium. As before, LDA1 interprets the
density maxima as regions of strong correlation, predicting

ELDA1
c =

∫ ∞

−∞
ρ(x)εLDA1

c (rs) dx = −42.2 mEh, (48)

whereas gLDA1 finds that almost all of the correlation comes
from a narrow region near the middle of the well and predicts

EgLDA1
c =

∫ ∞

−∞
ρ(x)εgLDA1

c (rs, η) dx = −12.7 mEh. (49)

As for 2-boxium, LDA1 and gLDA1 offer entirely different
pictures of electron correlation but both perturbation theory
(EMP2

c = −10.78 mEh and EMP3
c = −12.66 mEh) and near-

exact calculations (EFCI
c = −13.55 mEh) agree that gLDA1

is closer to the truth.

We have also performed HF, LDA1, gLDA1, MP2, MP3,
and FCI calculations on 3-, 4-, and 5-hookium and the den-
sity and curvature for 5-hookium are shown on the right of
Fig. 2. As before, both functions oscillate more rapidly but
with smaller amplitude than in 2-hookium and it is clear that,
as the number of electrons becomes large, both functions will
become increasingly uniform.113

The convergence of the 5-hookium energies is shown in
Table VI. As in 5-boxium, the LDA1 energies converge most
rapidly, followed by the HF and gLDA1 energies, then the
O4V 2, O3V 3, and O2V 4 components of the third-order en-
ergy, and finally the MP2 energy. However, each of these en-
ergies converges significantly more slowly than its 5-boxium
analog. All of these observations are consistent with the the-
oretical predictions of Table IV. Because the n-hookiums are
smaller gap systems, MP2 and MP3 are less successful than
for n-boxium, recovering roughly 85% and 96% of the corre-
lation energy in 5-hookium.

Our best estimates of the CBS limit HF and correlation
energies are summarized in the right half of Table VII. As be-
fore, whereas LDA1 seriously overestimates the correlation
energies, gLDA1 is within 15% of the true correlation en-
ergy in all cases. It is interesting to note that |Ec(n-hookium)|
> |Ec(n-boxium)| in all cases but that, whereas gLDA1 cor-
rectly predicts this trend, LDA1 reverses it.

VI. CONCLUDING REMARKS

The traditional LDA is exact by construction for an in-
finite uniform electron gas with Seitz radius rs. However, it
significantly overestimates the magnitudes of correlation en-
ergies in finite gases, such as those created when n elec-
trons are placed on the surface of a D-dimensional sphere.
This overestimation, which becomes even more pronounced
in non-uniform gases, led us to seek generalizations of the
LDA which are exact for both infinite and finite gases and, in
the present work, we have proposed that the local hole curva-
ture η provides the necessary information to achieve this goal.
For present purposes, we have extracted η from the HF wave
function: this requires only the occupied HF orbitals.

By fitting accurately calculated correlation energies for
systems of n electrons on a ring, we have constructed the gen-
eralized local density approximation for one-dimensional sys-
tems and this has yielded a correlation kernel εc(rs, η) and
a corresponding functional which we call GLDA1. To this
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point, we have considered only gases in which η ≤ 1 and, con-
sequently, the GLDA1 functional is not yet defined for gases
with higher curvature. However, if we assume that the corre-
lation kernel becomes flat, i.e., that εc(rs, η) = εc(rs, 1) when
η > 1, we obtain an approximation to GLDA1 which we call
gLDA1.

We have applied the traditional LDA1 functional and the
curvature-corrected gLDA1 functional to electrons trapped
in 1D boxes or in 1D harmonic wells and, by comparing
the predicted correlation energies with those obtained from
MP2, MP3, and full CI calculations, we have discovered that
gLDA1 is much more accurate than LDA1 in all cases.

We have also observed that gLDA1 tends to underesti-
mate the magnitudes of correlation energies. This suggests
that the true GLDA1 kernel continues to rise, i.e., that |εc(rs,
η)| > |εc(rs, 1)| but systematic examination of high-curvature
(η > 1) gases is required to test this. Such exploration is an
important topic for future research and will allow the GLDA1
functional to be completely defined and tested.

Although we have presented relatively few calculations
here, and much more investigation is warranted, these prelim-
inary results suggest that “curvature-corrected density func-
tional theory (CC-DFT)” may offer an efficient pathway to
improvements over existing functionals.
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APPENDIX A: CALCULATION OF MATRIX ELEMENTS

The matrix elements in Eq. (22) are expressed as expecta-
tion values of operators over the HF wave function. Therefore,
because 
2 and its reduced density matrices, e.g.,

ρ2(θ1, θ2) = ρ(r)2

(
1 −

[
sin n(θ1 − θ2)/2

n sin(θ1 − θ2)/2

]2
)

(A1)

have finite Fourier expansions, integrals of their products with
Fourier expansions of operators reduce to finite sums.

The Fourier expansions of bounded operators on a unit
ring are straightforward, e.g.,

r2
12 = 2 − 2 cos(θ1 − θ2), (A2)

∇r12 · ∇r12 = 1 + cos(θ1 − θ2), (A3)

r12 = − 4

π

∞∑
a=−∞

eia(θ1−θ2)

4a2 − 1
, (A4)

∇r12 · ∇r13 =
[

4i

π

∞∑
a=−∞

aeia(θ1−θ2)

4a2 − 1

] [
4i

π

∞∑
b=−∞

beib(θ1−θ3)

4b2 − 1

]
.

(A5)

The expansions of unbounded operators, e.g.,

r−1
12 = − 2

π

∞∑
a=−∞

⎛
⎝ |a|∑

p=1

1

2p − 1

⎞
⎠ eia(θ1−θ2) (A6)

are delicate (they converge only in the Cesàro mean89) but this
is sufficient for our purposes because we require only a few of
the low-order Fourier coefficients. The expansions of “cyclic”
operators (e.g., r12r23r31) are not simple products and must be
derived separately.

Thus, for example, to find the 〈
|r12r13|
〉 integral in 3-
ringium, the Fourier expansion


2 = [2−2 cos(θ1−θ2)] [2−2 cos(θ1−θ3)] [2−2 cos(θ2−θ3)]

3!(2π )3

(A7)
is combined with Eq. (A4) to yield

〈
|r12r13|
〉

= 16

π2

2∑
a=−2

2∑
b=−2

∫∫∫
eia(θ1−θ2)

4a2 − 1

eib(θ1−θ3)

4b2 − 1

2dθ1dθ2dθ3

= 16384

675π2
. (A8)

APPENDIX B: EXTRAPOLATION OF PERTURBATION
ENERGIES

It is common these days to estimate the CBS limit of
post-HF correlation energies by extrapolation.114 Pioneering
work by Schwartz,115 Hill,116 and Kutzelnigg and Morgan117

showed that, for atoms in 3D, the second-order energy contri-
butions from basis functions with angular momentum � con-
verge asymptotically as (� + 1/2)−4.

While generating the data in Sec. V, we found that the
MP2 and MP3 energies converge so slowly (Tables V and VI)
that the CBS limit is not reached (within our 0.1 mEh target
accuracy), even with our largest (M = 30) basis set. This is
particularly noticeable for n-hookium. We therefore needed
to develop and apply appropriate extrapolation procedures.

To this end, we analyzed the convergence of the second-
order energy

E(2) =
∞∑

r=3

∞∑
s=r+1

〈12||rs〉2

ε1 + ε2 − εr − εs

(B1)

obtained from the non-interacting orbitals and orbital energies
in 2-boxium and 2-hookium. In n-hookium, the double-bar
integral is

〈12||rs〉 = (−1)(r−s+1)/2
√

2

π

�((r + s − 2)/2)√
�(r)�(s)

, (B2)

if r + s is odd but it vanishes if r + s is even. The orbital ener-
gies are given by εk = k − 1/2. By substituting these expres-
sions into (B1) and making use of Stirling’s approximation,89
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one can show that the error introduced by truncating the basis
after M functions is

�E
(2)
M =

M∑
r=3

M∑
s=r+1

〈12||rs〉2

ε1 + ε2 − εr − εs

− E(2)

∼ 1

3(πM)3/2
+ O(M−2). (B3)

The closed-form expression for the 〈12||rs〉 integral in n-
boxium is cumbersome but a similar analysis reveals that the
analogous truncation error is O(M−3). The truncation errors
in the third-order energy can be found in the same way and all
of our results are summarized in Table IV.

The MP2, MP3, and FCI energies obtained with our
largest basis sets conform to these analytical predictions and
allowed us to extrapolate reliably to the CBS energies given in
Table VII. The good agreement between our extrapolated FCI
energies and QMC energies further increases our confidence
in these results.
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98N. R. Kestner and O. Sinanoğlu, Phys. Rev. 128, 2687 (1962).
99E. Santos, Anal. R. Soc. Esp. Fis. Quim. 64, 177 (1968).

100R. J. White and W. Byers Brown, J. Chem. Phys. 53, 3869 (1970).
101J. M. Benson and W. Byers Brown, J. Chem. Phys. 53, 3880 (1970).
102S. Kais, D. R. Herschbach, and R. D. Levine, J. Chem. Phys. 91, 7791

(1989).
103M. Taut, Phys. Rev. A 48, 3561 (1993).
104S. Ivanov, K. Burke, and M. Levy, J. Chem. Phys. 110, 10262 (1999).
105J. Cioslowski and K. Pernal, J. Chem. Phys. 113, 8434 (2000).
106T. M. Henderson, K. Runge, and R. J. Bartlett, Chem. Phys. Lett. 337, 138

(2001).

107D. P. O’Neill and P. M. W. Gill, Phys. Rev. A 68, 022505 (2003).
108J. Katriel, S. Roy, and M. Springborg, J. Chem. Phys. 123, 104104 (2005).
109P. M. W. Gill and D. P. O’Neill, J. Chem. Phys. 122, 094110 (2005).
110S. Ragot, J. Chem. Phys. 128, 164104 (2008).
111P. F. Loos and P. M. W. Gill, J. Chem. Phys. 131, 241101 (2009).
112J. Cioslowski, J. Chem. Phys. 139, 224108 (2013).
113P. F. Loos and P. M. W. Gill, Mol. Phys. 110, 2337 (2012).
114T. Helgaker, W. Klopper, H. Koch, and J. Noga, J. Chem. Phys. 106, 9639

(1997).
115C. Schwartz, Phys. Rev. 126, 1015 (1962).
116R. N. Hill, J. Chem. Phys. 83, 1173 (1985).
117W. Kutzelnigg and J. D. Morgan III, J. Chem. Phys. 96, 4484 (1992).

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded to  IP:

130.56.64.29 On: Mon, 07 Apr 2014 01:33:02

http://dx.doi.org/10.1063/1.3496372
http://dx.doi.org/10.1103/PhysRev.128.2687
http://dx.doi.org/10.1063/1.1673854
http://dx.doi.org/10.1063/1.1673855
http://dx.doi.org/10.1063/1.457247
http://dx.doi.org/10.1103/PhysRevA.48.3561
http://dx.doi.org/10.1063/1.478959
http://dx.doi.org/10.1063/1.1318767
http://dx.doi.org/10.1016/S0009-2614(01)00157-9
http://dx.doi.org/10.1103/PhysRevA.68.022505
http://dx.doi.org/10.1063/1.2033747
http://dx.doi.org/10.1063/1.1862237
http://dx.doi.org/10.1063/1.2904874
http://dx.doi.org/10.1063/1.3275519
http://dx.doi.org/10.1063/1.4837179
http://dx.doi.org/10.1080/00268976.2012.679634
http://dx.doi.org/10.1063/1.473863
http://dx.doi.org/10.1103/PhysRev.126.1015
http://dx.doi.org/10.1063/1.449481
http://dx.doi.org/10.1063/1.462811

