206 research outputs found

    Effects of Retronasal Smelling, Variety and Choice on Appetite and Satiety

    Get PDF
    Four principal areas were investigated. Nasal Patency: Measure nasal tissue swelling and airflow in BR and compare this to PreBR baseline and PostBR recovery; Ask subjects to selfassess nasal congestion at each test to compare with Astronaut selfassessment. Odorant Identification: Measure subject's ability to recognize odorants obtained from food samples taken from FARU (Flight Analog Research Unit) menu and compare this with recognition of food odors not available on FARU; Compare subject assessed ratings of odorant intensity and food liking with nasal airflow measurements to determine effect of fluid shift on smell ability. Meal Acceptability: Determine the onset and progression of reported 'menu fatigue' during BR; Determine whether decreased nasal airflow or smell ability are factors in 'menu fatigue'. Daily Mood and Health: Record mood changes during study and compare with meal acceptability and smell ability. A change in smell ability is measured by tracking subject perception of 35 odorants from admission to the FARU through to dismissal

    Access to Drinking-water and Arsenicosis in Bangladesh

    Get PDF
    The discovery of arsenic contamination in groundwater has challenged efforts to provide safe drinking-water to households in rural Bangladesh. Two nationally-representative surveys in 2000 and 2002 investigated water-usage patterns, water-testing, knowledge of arsenic poisoning, and behavioural responses to arsenic contamination. Knowledge of arsenicosis rose between the two surveys among women from 42% to 64% but awareness of consequences of arsenic remained limited; only 13% knew that it could lead to death. Behavioural responses to arsenic have been limited, probably in part because of the lack of concern but also because households are uncertain of how best to respond and have a strong preference for tubewell water even when wells are known to be contaminated. Further work conducted by the survey team highlighted the difficulties in providing alternative sources of water, with many households switching back to their original sources of water

    Detection of Potential Transit Signals in the First Three Quarters of Kepler Mission Data

    Full text link
    We present the results of a search for potential transit signals in the first three quarters of photometry data acquired by the Kepler Mission. The targets of the search include 151,722 stars which were observed over the full interval and an additional 19,132 stars which were observed for only 1 or 2 quarters. From this set of targets we find a total of 5,392 detections which meet the Kepler detection criteria: those criteria are periodicity of the signal, an acceptable signal-to-noise ratio, and a composition test which rejects spurious detections which contain non-physical combinations of events. The detected signals are dominated by events with relatively low signal-to-noise ratio and by events with relatively short periods. The distribution of estimated transit depths appears to peak in the range between 40 and 100 parts per million, with a few detections down to fewer than 10 parts per million. The detected signals are compared to a set of known transit events in the Kepler field of view which were derived by a different method using a longer data interval; the comparison shows that the current search correctly identified 88.1% of the known events. A tabulation of the detected transit signals, examples which illustrate the analysis and detection process, a discussion of future plans and open, potentially fruitful, areas of further research are included

    Detection of Potential Transit Signals in Sixteen Quarters of Kepler Mission Data

    Full text link
    We present the results of a search for potential transit signals in four years of photometry data acquired by the Kepler Mission. The targets of the search include 111,800 stars which were observed for the entire interval and 85,522 stars which were observed for a subset of the interval. We found that 9,743 targets contained at least one signal consistent with the signature of a transiting or eclipsing object, where the criteria for detection are periodicity of the detected transits, adequate signal-to-noise ratio, and acceptance by a number of tests which reject false positive detections. When targets that had produced a signal were searched repeatedly, an additional 6,542 signals were detected on 3,223 target stars, for a total of 16,285 potential detections. Comparison of the set of detected signals with a set of known and vetted transit events in the Kepler field of view shows that the recovery rate for these signals is 96.9%. The ensemble properties of the detected signals are reviewed.Comment: Accepted by ApJ Supplemen

    Overview of the Kepler Science Processing Pipeline

    Full text link
    The Kepler Mission Science Operations Center (SOC) performs several critical functions including managing the ~156,000 target stars, associated target tables, science data compression tables and parameters, as well as processing the raw photometric data downlinked from the spacecraft each month. The raw data are first calibrated at the pixel level to correct for bias, smear induced by a shutterless readout, and other detector and electronic effects. A background sky flux is estimated from ~4500 pixels on each of the 84 CCD readout channels, and simple aperture photometry is performed on an optimal aperture for each star. Ancillary engineering data and diagnostic information extracted from the science data are used to remove systematic errors in the flux time series that are correlated with these data prior to searching for signatures of transiting planets with a wavelet-based, adaptive matched filter. Stars with signatures exceeding 7.1 sigma are subjected to a suite of statistical tests including an examination of each star's centroid motion to reject false positives caused by background eclipsing binaries. Physical parameters for each planetary candidate are fitted to the transit signature, and signatures of additional transiting planets are sought in the residual light curve. The pipeline is operational, finding planetary signatures and providing robust eliminations of false positives.Comment: 8 pages, 3 figure

    CBR Temperature Fluctuations Induced by Gravitational Waves in a Spatially-Closed Inflationary Universe

    Full text link
    Primordial gravitational waves are created during the de Sitter phase of an exponentially-expanding (inflationary) universe, due to quantum zero-point vacuum fluctuations. These waves produce fluctuations in the temperature of the Cosmic Background Radiation (CBR). We calculate the multipole moments of the correlation function for these temperature fluctuations in a spatially-closed Friedman-Robertson-Walker (FRW) cosmological model. The results are compared to the corresponding multipoles in the spatially-flat case. The differences are small unless the density parameter today, Ω0\Omega_0, is greater than 2. (Submitted to Physical Review D).Comment: 18 pages of RevTex + 3 uuencoded postscript figure

    Access to Drinking-water and Arsenicosis in Bangladesh

    Get PDF
    The discovery of arsenic contamination in groundwater has challenged efforts to provide safe drinking-water to households in rural Bangladesh. Two nationally-representative surveys in 2000 and 2002 investigated water-usage patterns, water-testing, knowledge of arsenic poisoning, and behaviouralresponses to arsenic contamination. Knowledge of arsenicosis rose between the two surveys among women from 42% to 64% but awareness of consequences of arsenic remained limited; only 13% knew that it could lead to death. Behavioural responses to arsenic have been limited, probably in part because of the lack of concern but also because households are uncertain of how best to respond and have a strong preference for tubewell water even when wells are known to be contaminated. Further work conducted by the survey team highlighted the difficulties in providing alternative sources of water, with many households switching back to their original sources of water

    Characteristics of Kepler Planetary Candidates Based on the First Data Set: The Majority are Found to be Neptune-Size and Smaller

    Full text link
    In the spring of 2009, the Kepler Mission commenced high-precision photometry on nearly 156,000 stars to determine the frequency and characteristics of small exoplanets, conduct a guest observer program, and obtain asteroseismic data on a wide variety of stars. On 15 June 2010 the Kepler Mission released data from the first quarter of observations. At the time of this publication, 706 stars from this first data set have exoplanet candidates with sizes from as small as that of the Earth to larger than that of Jupiter. Here we give the identity and characteristics of 306 released stars with planetary candidates. Data for the remaining 400 stars with planetary candidates will be released in February 2011. Over half the candidates on the released list have radii less than half that of Jupiter. The released stars include five possible multi-planet systems. One of these has two Neptune-size (2.3 and 2.5 Earth-radius) candidates with near-resonant periods.Comment: Paper to accompany Kepler's June 15, 2010 data release; submitted to Astrophysical Journal Figures 1,2,& 3 revised. Improved labeling on all figures. Slight changes to planet frequencies in result

    Discovery and Rossiter-McLaughlin Effect of Exoplanet Kepler-8b

    Get PDF
    We report the discovery and the Rossiter-McLaughlin effect of Kepler-8b, a transiting planet identified by the NASA Kepler Mission. Kepler photometry and Keck-HIRES radial velocities yield the radius and mass of the planet around this F8IV subgiant host star. The planet has a radius RP = 1.419 RJ and a mass, MP = 0.60 MJ, yielding a density of 0.26 g cm^-3, among the lowest density planets known. The orbital period is P = 3.523 days and orbital semima jor axis is 0.0483+0.0006/-0.0012 AU. The star has a large rotational v sin i of 10.5 +/- 0.7 km s^-1 and is relatively faint (V = 13.89 mag), both properties deleterious to precise Doppler measurements. The velocities are indeed noisy, with scatter of 30 m s^-1, but exhibit a period and phase consistent with the planet implied by the photometry. We securely detect the Rossiter-McLaughlin effect, confirming the planet's existence and establishing its orbit as prograde. We measure an inclination between the projected planetary orbital axis and the projected stellar rotation axis of lambda = -26.9 +/- 4.6 deg, indicating a moderate inclination of the planetary orbit. Rossiter-McLaughlin measurements of a large sample of transiting planets from Kepler will provide a statistically robust measure of the true distribution of spin-orbit orientations for hot jupiters in general.Comment: 26 pages, 8 figures, 2 tables; In preparation for submission to the Astrophysical Journa
    • …
    corecore