5 research outputs found

    Factors of the technological acceptance model that influence the use of Facebook and Twitter by parents of students at the Regular Basic Education level

    Get PDF
    Las redes sociales constituyen un soporte tecnol贸gico invalorable, muchos colegios apuestan por desarrollar sus perfiles en Facebook y Twitter, a fin de comunicarse con su p煤blico objetivo. Existe inter茅s por evaluar el uso de las plataformas. El objetivo es determinar los factores que influyen en el uso de la red social Facebook y Twitter por parte de los padres de familia del nivel de Educaci贸n B谩sica Regular. Respecto a la metodolog铆a, se ha realizado utilizando la t茅cnica del muestreo aleatorio simple con la finalidad de determinar la validez del modelo. Asimismo, se emplea el Modelo de Ecuaciones Estructurales que nos permitir谩 el efecto y las relaciones m煤ltiples entre las variables propuestas. Finalmente, el modelo valido 17 preguntas de la encuesta. Quedando demostrado que la utilidad percibida si influye en la intenci贸n de uso de la red social Facebook y Twitter, por otro lado, la facilidad de uso influye en un porcentaje bajo en la intenci贸n de uso, en ese sentido, el estudio tambi茅n detalla un dato muy significativo que la facilidad de uso influye en la utilidad percibida. Por 煤ltimo, la intenci贸n de uso resulta el punto neur谩lgico que define el desarrollo de la facilidad y la utilidad percibida.Social networks are an invaluable technological support, many schools are committed to developing their profiles on Facebook and Twitter, in order to communicate with their target audience. There is interest in evaluating the use of the platforms. The objective is to determine the factors that influence the use of the social network Facebook and Twitter by parents of the Regular Basic Education level. Regarding the methodology, it has been carried out using the simple random sampling technique in order to determine the validity of the model. Likewise, the Structural Equations Model is used, which will allow us the effect and multiple relationships between the proposed variables. Finally, the model validated 17 survey questions. Being shown that the perceived utility does influence the intention to use the social network Facebook and Twitter, on the other hand, ease of use influences a low percentage of the intention to use, in that sense, the study also details a data Very significant that ease of use influences perceived usefulness. Finally, the intention of use is the nerve center that defines the development of ease and perceived utility.Facultad de Inform谩tic

    Factors of the technological acceptance model that influence the use of Facebook and Twitter by parents of students at the Regular Basic Education level

    Get PDF
    Las redes sociales constituyen un soporte tecnol贸gico invalorable, muchos colegios apuestan por desarrollar sus perfiles en Facebook y Twitter, a fin de comunicarse con su p煤blico objetivo. Existe inter茅s por evaluar el uso de las plataformas. El objetivo es determinar los factores que influyen en el uso de la red social Facebook y Twitter por parte de los padres de familia del nivel de Educaci贸n B谩sica Regular. Respecto a la metodolog铆a, se ha realizado utilizando la t茅cnica del muestreo aleatorio simple con la finalidad de determinar la validez del modelo. Asimismo, se emplea el Modelo de Ecuaciones Estructurales que nos permitir谩 el efecto y las relaciones m煤ltiples entre las variables propuestas. Finalmente, el modelo valido 17 preguntas de la encuesta. Quedando demostrado que la utilidad percibida si influye en la intenci贸n de uso de la red social Facebook y Twitter, por otro lado, la facilidad de uso influye en un porcentaje bajo en la intenci贸n de uso, en ese sentido, el estudio tambi茅n detalla un dato muy significativo que la facilidad de uso influye en la utilidad percibida. Por 煤ltimo, la intenci贸n de uso resulta el punto neur谩lgico que define el desarrollo de la facilidad y la utilidad percibida.Social networks are an invaluable technological support, many schools are committed to developing their profiles on Facebook and Twitter, in order to communicate with their target audience. There is interest in evaluating the use of the platforms. The objective is to determine the factors that influence the use of the social network Facebook and Twitter by parents of the Regular Basic Education level. Regarding the methodology, it has been carried out using the simple random sampling technique in order to determine the validity of the model. Likewise, the Structural Equations Model is used, which will allow us the effect and multiple relationships between the proposed variables. Finally, the model validated 17 survey questions. Being shown that the perceived utility does influence the intention to use the social network Facebook and Twitter, on the other hand, ease of use influences a low percentage of the intention to use, in that sense, the study also details a data Very significant that ease of use influences perceived usefulness. Finally, the intention of use is the nerve center that defines the development of ease and perceived utility.Facultad de Inform谩tic

    Simulation of suicide tendency by using machine learning

    Get PDF
    El texto completo de este trabajo no est谩 disponible en el Repositorio Acad茅mico UPC por restricciones de la casa editorial donde ha sido publicado.Suicide is one of the most distinguished causes of death on the news worldwide. There are several factors and variables that can lead a person to commit this act, for example, stress, self-esteem, depression, among others. The causes and profiles of suicide cases are not revealed in detail by the competent institutions. We propose a simulation with a systematically generated dataset; such data reflect the adolescent population with suicidal tendency in Peru. We will evaluate three algorithms of supervised machine learning as a result of the algorithm C4.5 which is based on the trees to classify in a better way the suicidal tendency of adolescents. We finally propose a desktop tool that determines the suicidal tendency level of the adolescent.Revisi贸n por pare

    Convolutional Neural Networks on Assembling Classification Models to Detect Melanoma Skin Cancer

    No full text
    In 2020, there were more than 1.2 million new skin cancer diagnoses, and melanoma was the most recurrent type of cancer. On the other hand, melanoma is the least common but most serious form of skin cancer affecting both men and women. This work aims to assemble classification models to detect a case of melanoma with high accuracy based on a Convolutional Neural Networks system. The methodology considers training 21 models for image classification, with the best assembly performance of  EfficientNet and VGG-19 architectures,  the data augmentation technique was used to the images to improve its performance. The results show 92.85% of accuracy, 71.50% of sensitivity, and 94.89% of specificity, with an improvement of 0.06% in accuracy and specificity. The assembly of the classification models achieved higher accuracy in melanoma skin cancer image classification

    Modelado de la Satisfacci贸n Laboral de Docentes Peruanos de Educaci贸n B谩sica utilizando t茅cnicas de aprendizaje autom谩tico

    No full text
    Teacher job satisfaction is an important aspect of academic performance, student retention, and teacher retention. We propose to determine the predictive model of job satisfaction of basic education teachers using machine learning techniques. The original data set consisted of 15,087 instances and 942 attributes from the national survey of teachers from public and private educational institutions of regular basic education (ENDO-2018) carried out by the Ministry of Education of Peru. We used the ANOVA F-test filter and the Chi-Square filter as feature selection techniques. In the modeling phase, the logistic regression algorithms, Gradient Boosting, Random Forest, XGBoost and Decision Trees-CART were used. Among the algorithms evaluated, XGBoost and Random Forest stand out, obtaining similar results in 4 of the 8 metrics evaluated, these are: balanced accuracy of 74%, sensitivity of 74%, F1-Score of 0.48 and negative predictive value of 0.94. However, in terms of the area under the ROC curve, XGBoost scores 0.83, while Random Forest scores 0.82. These algorithms also obtain the highest true-positive values (479 instances) and lowest false-negative values (168 instances) in the confusion matrix. Economic income, satisfaction with life, self-esteem, teaching activity, relationship with the director, perception of living conditions, family relationships; health problems related to depression and satisfaction with the relationship with colleagues turned out to be the most important predictors of job satisfaction in basic education teachers.La satisfacci贸n laboral de los maestros es un aspecto importante del rendimiento acad茅mico, la retenci贸n de estudiantes y la retenci贸n de maestros. Proponemos determinar el modelo predictivo de satisfacci贸n laboral de docentes de educaci贸n b谩sica utilizando t茅cnicas de aprendizaje autom谩tico. El conjunto de datos original constaba de 15.087 instancias y 942 atributos de la encuesta nacional a docentes de instituciones educativas p煤blicas y privadas de educaci贸n b谩sica regular (ENDO-2018) realizada por el Ministerio de Educaci贸n de Per煤. Utilizamos el filtro ANOVA F-test y el filtro Chi-Square como t茅cnicas de selecci贸n de caracter铆sticas. En la fase de modelado se utilizaron los algoritmos de regresi贸n log铆stica, Gradient Boosting, Random Forest, XGBoost y Decision Trees-CART. Entre los algoritmos evaluados se destacan XGBoost y Random Forest, obteniendo resultados similares en 4 de las 8 m茅tricas evaluadas, estas son: precisi贸n equilibrada del 74 %, sensibilidad del 74 %, F1-Score de 0,48 y valor predictivo negativo de 0,94. Sin embargo, en t茅rminos del 谩rea bajo la curva ROC, XGBoost obtiene una puntuaci贸n de 0,83, mientras que Random Forest obtiene una puntuaci贸n de 0,82. Estos algoritmos tambi茅n obtienen los valores positivos verdaderos m谩s altos (479 instancias) y los valores negativos falsos m谩s bajos (168 instancias) en la matriz de confusi贸n. Ingresos econ贸micos, satisfacci贸n con la vida, autoestima, actividad docente, relaci贸n con el director, percepci贸n de las condiciones de vida, relaciones familiares; los problemas de salud relacionados con la depresi贸n y la satisfacci贸n con la relaci贸n con los compa帽eros resultaron ser los predictores m谩s importantes de la satisfacci贸n laboral en los docentes de educaci贸n b谩sica
    corecore