3,077 research outputs found

    Cyclooxygenase-2 and prostaglandin E(2)(PGE(2)) receptor messenger RNAs are affected by bovine oocyte maturation time and cumulus-oocyte complex quality, and PGE(2) induces moderate expansion of the bovine cumulus in vitro.

    Get PDF
    Expression of cyclooxygenase-2 (COX-2) and prostaglandin E(2) (PGE(2)) receptor 2 (EP2) are necessary for rodent cumulus expansion in vivo. Prostaglandin E(2) receptor 3 (EP3) has been detected in bovine preovulatory follicles and corpora lutea. The current experiments examined the effect of PGE(2) on bovine cumulus expansion in vitro and expression of COX-2, EP1, EP2, EP3, and EP4 mRNAs in bovine cumulus-oocyte complexes (COCs) at 0, 6, 12, 18, and 24 h time points during maturation in vitro. Concentrations of PGE(2) above 50 ng/ml resulted in moderate cumulus expansion of bovine COCs, but expansion did not occur in the absence of serum. COX-2 mRNA expression increased in bovine COCs at 6 h and 12 h of maturation, then decreased. EP2 mRNA was detectable by reverse transcription-polymerase chain reaction at all time points. EP3 mRNA expression increased in COCs from 0 to 6 h and remained at this higher level through the culture period. Very low levels of EP4 mRNA expression were detectable, but EP1 was not detected in bovine COCs. Because EP receptor mRNAs and COX-2 mRNA are expressed in bovine COCs, there exists the potential for a prostaglandin autocrine/paracrine regulatory pathway during oocyte maturation. Differential expression of the EP3 mRNA among varying COC classes indicates that this gene product may be a useful marker of oocyte competence. Although the PGE(2) pathway is involved in cumulus expansion, serum factors are required to mediate PGE(2)-induced expansion

    Proton-Rich Nuclear Statistical Equilibrium

    Full text link
    Proton-rich material in a state of nuclear statistical equilibrium (NSE) is one of the least studied regimes of nucleosynthesis. One reason for this is that after hydrogen burning, stellar evolution proceeds at conditions of equal number of neutrons and protons or at a slight degree of neutron-richness. Proton-rich nucleosynthesis in stars tends to occur only when hydrogen-rich material that accretes onto a white dwarf or neutron star explodes, or when neutrino interactions in the winds from a nascent proto-neutron star or collapsar-disk drive the matter proton-rich prior to or during the nucleosynthesis. In this paper we solve the NSE equations for a range of proton-rich thermodynamic conditions. We show that cold proton-rich NSE is qualitatively different from neutron-rich NSE. Instead of being dominated by the Fe-peak nuclei with the largest binding energy per nucleon that have a proton to nucleon ratio close to the prescribed electron fraction, NSE for proton-rich material near freeze-out temperature is mainly composed of Ni56 and free protons. Previous results of nuclear reaction network calculations rely on this non-intuitive high proton abundance, which this paper will explain. We show how the differences and especially the large fraction of free protons arises from the minimization of the free energy as a result of a delicate competition between the entropy and the nuclear binding energy.Comment: 4 pages, 7 figure

    Neural responses to facial and vocal expressions of fear and disgust

    Get PDF
    Neuropsychological studies report more impaired responses to facial expressions of fear than disgust in people with amygdala lesions, and vice versa in people with Huntington's disease. Experiments using functional magnetic resonance imaging (fMRI) have confirmed the role of the amygdala in the response to fearful faces and have implicated the anterior insula in the response to facial expressions of disgust. We used fMRI to extend these studies to the perception of fear and disgust from both facial and vocal expressions. Consistent with neuropsychological findings, both types of fearful stimuli activated the amygdala. Facial expressions of disgust activated the anterior insula and the caudate-putamen; vocal expressions of disgust did not significantly activate either of these regions. All four types of stimuli activated the superior temporal gyrus. Our findings therefore (i) support the differential localization of the neural substrates of fear and disgust; (ii) confirm the involvement of the amygdala in the emotion of fear, whether evoked by facial or vocal expressions; (iii) confirm the involvement of the anterior insula and the striatum in reactions to facial expressions of disgust; and (iv) suggest a possible general role for the perception of emotional expressions for the superior temporal gyrus
    corecore