2,664 research outputs found

    Free initial wave packets and the long-time behavior of the survival and nonescape probabilities

    Full text link
    The behavior of both the survival S(t) and nonescape P(t) probabilities at long times for the one-dimensional free particle system is shown to be closely connected to that of the initial wave packet at small momentum. We prove that both S(t) and P(t) asymptotically exhibit the same power-law decrease at long times, when the initial wave packet in momentum representation behaves as O(1) or O(k) at small momentum. On the other hand, if the integer m becomes greater than 1, S(t) and P(t) decrease in different power-laws at long times.Comment: 4 pages, 3 figures, Title and organization changed, however the results not changed, To appear in Phys. Rev.

    Searching for molecular outflows in Hyper-Luminous Infrared Galaxies

    Full text link
    We present constraints on the molecular outflows in a sample of five Hyper-Luminous Infrared Galaxies using Herschel observations of the OH doublet at 119 {\mu}m. We have detected the OH doublet in three cases: one purely in emission and two purely in absorption. The observed emission profile has a significant blueshifted wing suggesting the possibility of tracing an outflow. Out of the two absorption profiles, one seems to be consistent with the systemic velocity while the other clearly indicates the presence of a molecular outflow whose maximum velocity is about ~1500 km/s. Our analysis shows that this system is in general agreement with previous results on Ultra-luminous Infrared Galaxies and QSOs, whose outflow velocities do not seem to correlate with stellar masses or starburst luminosities (star formation rates). Instead the galaxy outflow likely arises from an embedded AGN.Comment: Accepted for publication in MNRAS. 13 pages, 11 figures, 4 table

    Suppression of Zeno effect for distant detectors

    Full text link
    We describe the influence of continuous measurement in a decaying system and the role of the distance from the detector to the initial location of the system. The detector is modeled first by a step absorbing potential. For a close and strong detector, the decay rate of the system is reduced; weaker detectors do not modify the exponential decay rate but suppress the long-time deviations above a coupling threshold. Nevertheless, these perturbing effects of measurement disappear by increasing the distance between the initial state and the detector, as well as by improving the efficiency of the detector.Comment: 4 pages, 4 figure

    Tunneling dynamics in relativistic and nonrelativistic wave equations

    Full text link
    We obtain the solution of a relativistic wave equation and compare it with the solution of the Schroedinger equation for a source with a sharp onset and excitation frequencies below cut-off. A scaling of position and time reduces to a single case all the (below cut-off) nonrelativistic solutions, but no such simplification holds for the relativistic equation, so that qualitatively different ``shallow'' and ``deep'' tunneling regimes may be identified relativistically. The nonrelativistic forerunner at a position beyond the penetration length of the asymptotic stationary wave does not tunnel; nevertheless, it arrives at the traversal (semiclassical or B\"uttiker-Landauer) time "tau". The corresponding relativistic forerunner is more complex: it oscillates due to the interference between two saddle point contributions, and may be characterized by two times for the arrival of the maxima of lower and upper envelops. There is in addition an earlier relativistic forerunner, right after the causal front, which does tunnel. Within the penetration length, tunneling is more robust for the precursors of the relativistic equation

    Time scale of forerunners in quantum tunneling

    Full text link
    The forerunners preceding the main tunneling signal of the wave created by a source with a sharp onset or by a quantum shutter, have been generally associated with over-the-barrier (non-tunneling) components. We demonstrate that, while this association is true for distances which are larger than the penetration lenght, for smaller distances the forerunner is dominated by under-the-barrier components. We find that its characteristic arrival time is inversely proportional to the difference between the barrier energy and the incidence energy, a tunneling time scale different from both the phase time and the B\"uttiker-Landauer (BL) time.Comment: Revtex4, 14 eps figure

    Dynamical description of the buildup process in resonant tunneling: Evidence of exponential and non-exponential contributions

    Full text link
    The buildup process of the probability density inside the quantum well of a double-barrier resonant structure is studied by considering the analytic solution of the time dependent Schr\"{o}dinger equation with the initial condition of a cutoff plane wave. For one level systems at resonance condition we show that the buildup of the probability density obeys a simple charging up law, Ψ(τ)/ϕ=1eτ/τ0,| \Psi (\tau) / \phi | =1-e^{-\tau /\tau_0}, where ϕ\phi is the stationary wave function and the transient time constant τ0\tau_0 is exactly two lifetimes. We illustrate that the above formula holds both for symmetrical and asymmetrical potential profiles with typical parameters, and even for incidence at different resonance energies. Theoretical evidence of a crossover to non-exponential buildup is also discussed.Comment: 4 pages, 2 figure
    corecore