3,737 research outputs found

    Fourier Decomposition of RR Lyrae light curves and the SX Phe population in the central region of NGC 3201

    Get PDF
    CCD time-series observations of the central region of the globular cluster NGC~3201 were obtained with the aim of performing the Fourier decomposition of the light curves of the RR~Lyrae stars present in that field. This procedure gave the mean values, for the metallicity, of [Fe/H]ZW=−1.483±0.006_{ZW}=-1.483 \pm 0.006 (statistical) ±0.090\pm 0.090 (systematical), and for the distance, 5.000±0.0015.000 \pm 0.001~kpc (statistical) ±0.220\pm 0.220 (systematical). The values found from two RRc stars are consistent with those derived previously. The differential reddening of the cluster was investigated and individual reddenings for the RR Lyrae stars were estimated from their V−IV-I curves. We found an average value of E(B−V)=0.23±0.02E(B-V)= 0.23 \pm 0.02. An investigation of the light curves of stars in the {\it blue stragglers} region led to the discovery of three new SX~Phe stars. The period-luminosity relation of the SX~Phe stars was used for an independent determination of the distance to the cluster and of the individual reddenings. We found a distance of 5.0 kpcComment: To appear in Revista Mexicana de Astronom\'ia y Astrof\'isica, Octuber 2014 issue, Vol 50. 17 pages, 10 figure

    Theory of one and two donors in Silicon

    Full text link
    We provide here a roadmap for modeling silicon nano-devices with one or two group V donors (D). We discuss systems containing one or two electrons, that is, D^0, D^-, D_2^+ and D_2^0 centers. The impact of different levels of approximation is discussed. The most accurate instances -- for which we provide quantitative results -- are within multivalley effective mass including the central cell correction and a configuration interaction account of the electron-electron correlations. We also derive insightful, yet less accurate, analytical approximations and discuss their validity and limitations -- in particular, for a donor pair, we discuss the single orbital LCAO method, the Huckel approximation and the Hubbard model. Finally we discuss the connection between these results and recent experiments on few dopant devices.Comment: 13 pages, 6 figure

    Re-entrant ferromagnetism in a generic class of diluted magnetic semiconductors

    Full text link
    Considering a general situation where a semiconductor is doped by magnetic impurities leading to a carrier-induced ferromagnetic exchange coupling between the impurity moments, we show theoretically the possible generic existence of three ferromagnetic transition temperatures, T_1 > T_2 > T_3, with two distinct ferromagnetic regimes existing for T_1 > T > T_2 and T < T_3. Such an intriguing re-entrant ferromagnetism, with a paramagnetic phase (T_2 > T > T_3) between two ferromagnetic phases, arises from a subtle competition between indirect exchange induced by thermally activated carriers in an otherwise empty conduction band versus the exchange coupling existing in the impurity band due to the bound carriers themselves. We comment on the possibility of observing such a re-entrance phenomenon in diluted magnetic semiconductors and magnetic oxides.Comment: 4 pages, 3 figure

    Impact of the valley degree of freedom on the control of donor electrons near a Si/SiO_2 interface

    Full text link
    We analyze the valley composition of one electron bound to a shallow donor close to a Si/barrier interface as a function of an applied electric field. A full six-valley effective mass model Hamiltonian is adopted. For low fields, the electron ground state is essentially confined at the donor. At high fields the ground state is such that the electron is drawn to the interface, leaving the donor practically ionized. Valley splitting at the interface occurs due to the valley-orbit coupling, V_vo^I = |V_vo^I| e^{i theta}. At intermediate electric fields, close to a characteristic shuttling field, the electron states may constitute hybridized states with valley compositions different from the donor and the interface ground states. The full spectrum of energy levels shows crossings and anti-crossings as the field varies. The degree of level repulsion, thus the width of the anti-crossing gap, depends on the relative valley compositions, which vary with |V_vo^I|, theta and the interface-donor distance. We focus on the valley configurations of the states involved in the donor-interface tunneling process, given by the anti-crossing of the three lowest eigenstates. A sequence of two anti-crossings takes place and the complex phase theta affects the symmetries of the eigenstates and level anti-crossing gaps. We discuss the implications of our results on the practical manipulation of donor electrons in Si nanostructures.Comment: 8 pages, including 5 figures. v2: Minor clarifying changes in the text and figures. Change of title. As published in PR

    Systematic challenges for future gravitational wave measurements of precessing binary black holes

    Get PDF
    The properties of precessing, coalescing binary black holes are presently inferred through comparison with two approximate models of compact binary coalescence. In this work we show these two models often disagree substantially when binaries have modestly large spins (a≳0.4a\gtrsim 0.4) and modest mass ratios (q≳2q\gtrsim 2). We demonstrate these disagreements using standard figures of merit and the parameters inferred for recent detections of binary black holes. By comparing to numerical relativity, we confirm these disagreements reflect systematic errors. We provide concrete examples to demonstrate that these systematic errors can significantly impact inferences about astrophysically significant binary parameters. For the immediate future, parameter inference for binary black holes should be performed with multiple models (including numerical relativity), and carefully validated by performing inference under controlled circumstances with similar synthetic events.Comment: 12 pages, 9 figure

    Effect of strain on the orbital and magnetic ordering of manganite thin films and their interface with an insulator

    Full text link
    We study the effect of uniform uniaxial strain on the ground state electronic configuration of a thin film manganite. Our model Hamiltonian includes the double-exchange, the Jahn-Teller electron-lattice coupling, and the antiferromagnetic superexchange. The strain arises due to the lattice mismatch between an insulating substrate and a manganite which produces a tetragonal distortion. This is included in the model via a modification of the hopping amplitude and the introduction of an energy splitting between the Mn e_g levels. We analyze the bulk properties of half-doped manganites and the electronic reconstruction at the interface between a ferromagnetic and metallic manganite and the insulating substrate. The strain drives an orbital selection modifying the electronic properties and the magnetic ordering of manganites and their interfaces.Comment: 8 pages, 8 figure
    • …
    corecore