1,165 research outputs found

    Dissipative quantum systems modeled by a two level reservoir coupling

    Get PDF
    The coupling between a quantum dynamical system and a two-level system reservoir is analysed within the framework of the Feynman-Vernon theory. We stress the differences between this new reservoir and the well-known bath of oscillators and show that, in order to obtain the Langevin equation for the system of interest in the high temperature regime, we have to choose a spectral distribution function J(ω)J(\omega) which is finite for ω=0\omega=0.Comment: 6 pages, RevteX, preprint UNICAM

    An alternative approach for the dynamics of polarons in one dimension

    Full text link
    We developed a new method based on functional integration to treat the dynamics of polarons in one-dimensional systems. We treat the acoustical and the optical case in an unified manner, showing their differences and similarities. The mobility and diffusion coefficients are calculated in the Markovian approximation in the strong coupling limit.Comment: 57 page

    Improving the Knowledge on Seismogenic Sources in the Lower Tagus Valley for Seismic Hazard Purposes

    Get PDF
    The Lower Tagus Valley, that includes the metropolitan area of Lisbon, has been struck by several earthquakes which produced significant material damage and loss of lives. Their exact location remains unknown. Our goal is to shed some light into the seismogenic sources in the area using seismic reflection and geological data. In areas with no seismic coverage, potential-field data interpretation was carried out. Seismicity was overlaid to the potential seismogenic structures and high-resolution data was acquired in order to confirm which structures have been active into the Quaternary. Three major fault-zones affecting the Neogene were identified: V. F. Xira, Samora-Alcochete and Pinhal Novo. For the first fault, strong evidences suggest it is active. The other two fault-zones and other structures previously unknown can be correlated with several epicentres. Empirical relationships between maximum moment magnitude and fault area indicate that MW > 6.5 earthquakes can be expected for the larger structures

    Localization on short-range potentials in dissipative quantum mechanics

    Full text link
    In this Letter the problem of the existence of a state localized on a weak short-range attractive potential in the presence of dissipation is considered. It is shown that, contrary to the pure quantum case, a localized state is produced in any number of dimensions, while in low dimensions dissipation leads to much stronger localization. The results have physical implications for the dissipative dynamics of objects such as heavy particles in Fermi liquids and for superconductivity in high-TcT_c materials.Comment: RevTeX, 4 pages, 1 figure. Published versio

    Dissipation Enhanced Asymmetric Transport in Quantum Ratchets

    Full text link
    Quantum mechanical motion of a particle in a periodic asymmetric potential is studied theoretically at zero temperature. It is shown based on semi-classical approximation that the tunneling probability from one local minimum to the next becomes asymmetric in the presence of weak oscillating field, even though there is no macroscopic field gradient in average. Dissipation enhances this asymmetry, and leads to a steady unidirectional current, resulting in a quantum ratchet system.Comment: 12 pages, 2 Figures, submitted to J. Phys. Soc. Jp

    Exact c-number Representation of Non-Markovian Quantum Dissipation

    Full text link
    The reduced dynamics of a quantum system interacting with a linear heat bath finds an exact representation in terms of a stochastic Schr{\"o}dinger equation. All memory effects of the reservoir are transformed into noise correlations and mean-field friction. The classical limit of the resulting stochastic dynamics is shown to be a generalized Langevin equation, and conventional quantum state diffusion is recovered in the Born--Markov approximation. The non-Markovian exact dynamics, valid at arbitrary temperature and damping strength, is exemplified by an application to the dissipative two-state system.Comment: 4 pages, 2 figures. To be published in Phys. Rev. Let

    Fluorescence In Situ Hybridization: a potentially useful technique for detection of microorganisms on mortars

    Get PDF
    This paper discusses the possibilities of applying Fluorescence In Situ Hybridization (FISH) to detect microorganisms on mortars, as this analytical technique has been used in different fields for the detection and identification of individual microbial cells in situ. FISH technique was applied for microbial detection on test and real mortars inoculated with fungal suspensions of S. cerevisae 396 and Nectria sp. A universal eukaryotic probe (EUK516) labelled with fluorescent dye (Cy3) was tested with different cell fixation procedures (4% (w / v) paraformaldehyde or 50% (v / v) ethanol in PBS). Positive results were obtained with FISH detection of Nectria on testing/artificial as well as authentic/historical mortars, which confirms successful application of FISH technique to a new on mortars

    Non-Markoffian effects of a simple nonlinear bath

    Full text link
    We analyze a model of a nonlinear bath consisting of a single two-level system coupled to a linear bath (a classical noise force in the limit considered here). This allows us to study the effects of a nonlinear, non-Markoffian bath in a particularly simple situation. We analyze the effects of this bath onto the dynamics of a spin by calculating the decay of the equilibrium correlator of the spin's z-component. The exact results are compared with those obtained using three commonly used approximations: a Markoffian master equation for the spin dynamics, a weak-coupling approximation, and the substitution of a linear bath for the original nonlinear bath.Comment: 7 pages, 6 figure

    Normal transport properties for a classical particle coupled to a non-Ohmic bath

    Full text link
    We study the Hamiltonian motion of an ensemble of unconfined classical particles driven by an external field F through a translationally-invariant, thermal array of monochromatic Einstein oscillators. The system does not sustain a stationary state, because the oscillators cannot effectively absorb the energy of high speed particles. We nonetheless show that the system has at all positive temperatures a well-defined low-field mobility over macroscopic time scales of order exp(-c/F). The mobility is independent of F at low fields, and related to the zero-field diffusion constant D through the Einstein relation. The system therefore exhibits normal transport even though the bath obviously has a discrete frequency spectrum (it is simply monochromatic) and is therefore highly non-Ohmic. Such features are usually associated with anomalous transport properties

    Experimental Designs for Binary Data in Switching Measurements on Superconducting Josephson Junctions

    Full text link
    We study the optimal design of switching measurements of small Josephson junction circuits which operate in the macroscopic quantum tunnelling regime. Starting from the D-optimality criterion we derive the optimal design for the estimation of the unknown parameters of the underlying Gumbel type distribution. As a practical method for the measurements, we propose a sequential design that combines heuristic search for initial estimates and maximum likelihood estimation. The presented design has immediate applications in the area of superconducting electronics implying faster data acquisition. The presented experimental results confirm the usefulness of the method. KEY WORDS: optimal design, D-optimality, logistic regression, complementary log-log link, quantum physics, escape measurement
    • …
    corecore