184 research outputs found

    Geoengineering: Whiter skies?

    Get PDF
    One proposed side effect of geoengineering with stratospheric sulfate aerosols is sky whitening during the day and afterglows near sunset, as is seen after large volcanic eruptions. Sulfate aerosols in the stratosphere would increase diffuse light received at the surface, but with a non-uniform spectral distribution. We use a radiative transfer model to calculate spectral irradiance for idealized size distributions of sulfate aerosols. A 2% reduction in total irradiance, approximately enough to offset anthropogenic warming for a doubling of CO_2 concentrations, brightens the sky (increase in diffuse light) by 3 to 5 times, depending on the aerosol size distribution. The relative increase is less when optically thin cirrus clouds are included in our simulations. Particles with small radii have little influence on the shape of the spectra. Particles of radius ∼0.5 μm preferentially increase diffuse irradiance in red wavelengths, whereas large particles (∼0.9 μm) preferentially increase diffuse irradiance in blue wavelengths. Spectra show little change in dominant wavelength, indicating little change in sky hue, but all particle size distributions produce an increase in white light relative to clear sky conditions. Diffuse sky spectra in our simulations of geoengineering with stratospheric aerosols are similar to those of average conditions in urban areas today

    The frequency response of temperature and precipitation in a climate model

    Get PDF
    Dynamic aspects of the climate's response to forcing are typically explored through transient simulations in the time domain. However, because of the large range of time-scales involved, some features are more easily observed in the frequency domain. We compute the frequency-response of the HadCM3L general circulation model (GCM) to sinusoidal perturbations in solar radiative forcing, with periods between 2^(−1/2) and 2^9 (512) years. The global mean temperature response decreases with increasing frequency, and the frequency scaling at time-scales longer than one year is consistent with the behavior of diffusion into a semi-infinite slab. The land-sea contrast and land-averaged precipitation, however, exhibit relatively little dependency on the frequency of the imposed perturbation, with significant response at both short and long periods. Understanding these relative characteristics of different climate variables in the frequency domain is important to understanding the transient response of the climate system to both anthropogenic and natural (e.g., volcanic) forcings; the frequency response is also relevant in understanding the spectrum of natural variability

    Empirical Prediction of Short-Term Annual Global Temperature Variability

    Get PDF
    Global mean surface air temperature (Tglobal) variability on subdecadal timescales can be of substantial magnitude relative to the long-term global warming signal, and such variability has been associated with considerable environmental and societal impacts. Therefore, probabilistic foreknowledge of short-term Tglobal evolution may be of value for anticipating and mitigating some course-resolution climate-related risks. Here we present a simple, empirically based methodology that utilizes only global spatial patterns of annual mean surface air temperature anomalies to predict subsequent annual Tglobal anomalies via partial least squares regression. The method\u27s skill is primarily achieved via information on the state of long-term global warming as well as the state and recent evolution of the El Niño–Southern Oscillation and the Interdecadal Pacific Oscillation. We test the out-of-sample skill of the methodology using cross validation and in a forecast mode where statistical predictions are made precisely as they would have been if the procedure had been operationalized starting in the year 2000. The average forecast errors for lead times of 1 to 4 years are smaller than naïve benchmarks on average, and they perform favorably relative to most dynamical Global Climate Models retrospectively initialized to the observed state of the climate system. Thus, this method can be used as a computationally efficient benchmark for dynamical model forecast systems

    Impacts of ocean albedo alteration on Arctic sea ice restoration and Northern Hemisphere climate

    Get PDF
    The Arctic Ocean is expected to transition into a seasonally ice-free state by mid-century, enhancing Arctic warming and leading to substantial ecological and socio-economic challenges across the Arctic region. It has been proposed that artificially increasing high latitude ocean albedo could restore sea ice, but the climate impacts of such a strategy have not been previously explored. Motivated by this, we investigate the impacts of idealized high latitude ocean albedo changes on Arctic sea ice restoration and climate. In our simulated 4xCO_2 climate, imposing surface albedo alterations over the Arctic Ocean leads to partial sea ice recovery and a modest reduction in Arctic warming. With the most extreme ocean albedo changes, imposed over the area 70°–90°N, September sea ice cover stabilizes at ~40% of its preindustrial value (compared to ~3% without imposed albedo modifications). This is accompanied by an annual mean Arctic surface temperature decrease of ~2 °C but no substantial global mean temperature decrease. Imposed albedo changes and sea ice recovery alter climate outside the Arctic region too, affecting precipitation distribution over parts of the continental United States and Northeastern Pacific. For example, following sea ice recovery, wetter and milder winter conditions are present in the Southwest United States while the East Coast experiences cooling. We conclude that although ocean albedo alteration could lead to some sea ice recovery, it does not appear to be an effective way of offsetting the overall effects of CO_2 induced global warming

    An issue of permanence: assessing the effectiveness of temporary carbon storage

    Get PDF
    Abstract in HTML and technical report in PDF available on the Massachusetts Institute of Technology Joint Program on the Science and Policy of Global Change website (http://mit.edu/globalchange/www/).In this paper, we present a method to quantify the effectiveness of carbon mitigation options taking into account the "permanence" of the emissions reduction. While the issue of permanence is most commonly associated with a "leaky" carbon sequestration reservoir, we argue that this is an issue that applies to just about all carbon mitigation options. The appropriate formulation of this problem is to ask 'what is the value of temporary storage?' Valuing temporary storage can be represented as a familiar economic problem, with explicitly stated assumptions about carbon prices and the discount rate. To illustrate the methodology, we calculate the sequestration effectiveness for injecting CO2 at various depths in the ocean. Analysis is performed for three limiting carbon price assumptions: constant carbon prices (assumes constant marginal damages), carbon prices rise at the discount rate (assumes efficient allocation of a cumulative emissions cap without a backstop technology), and carbon prices first rise at the discount rate but become constant after a given time (assumes introduction of a backstop technology). Our results show that the value of relatively deep ocean carbon sequestration can be nearly equivalent to permanent sequestration if marginal damages (i.e., carbon prices) remain constant or if there is a backstop technology that caps the abatement cost in the not too distant future. On the other hand, if climate damages are such as to require a fixed cumulative emissions limit and there is no backstop, then a storage option with even very slow leakage has limited value relative to a permanent storage option

    Non-Perturbative Renormalization Group Analysis of the Ohmic Quantum Dissipation

    Full text link
    We analyze quantum tunneling with the Ohmic dissipation by the non-perturbative renormalization group method. We calculate the localization susceptibility to evaluate the critical dissipation for the quantum-classical transition, and find considerably larger critical dissipation compared to the previous semi-classical arguments.Comment: Latex 9 pages, 3 eps figures, final versio

    Break-even year: A concept for understanding intergenerational trade-offs in climate change mitigation policy

    Get PDF
    Global climate change mitigation is often framed in public discussions as a tradeoff between environmental protection and harm to the economy. However, climate-economy models have consistently calculated that the immediate implementation of greenhouse gas emissions restriction (via e.g. a global carbon price) would be in humanity’s best interest on purely economic grounds. Despite this, the implementation of global climate policy has been notoriously difficult to achieve. This evokes an apparent paradox: if the implementation of a global carbon price is not only beneficial to the environment, but is also ‘economically optimal’, why has it been so difficult to enact?One potential reason for this difficulty is that economically optimal greenhouse gas emissions restrictions are not economically beneficial for the generation of people that launch them. The purpose of this article is to explore this issue by introducing the concept of the break-even year, which we define as the year when the economically optimal policy begins to produce global mean net economic benefits. We show that in a commonly used climate-economy model (DICE), the break-even year is relatively far into the future—around 2080 for mitigation policy beginning in the early 2020s. Notably, the break-even year is not sensitive to the uncertain magnitudes of the costs of climate change mitigation policy or the costs of economic damages from climate change. This result makes it explicit and understandable why an economically optimal policy can be difficult to implement in practice

    Meteorology and climatology of historical weekly wind and solar power resource droughts over western North America in ERA5

    Get PDF
    Wind and solar electricity generation is projected to expand substantially over the next several decades due both to rapid cost declines as well as regulation designed to achieve climate targets. With increasing reliance on wind and solar generation, future energy systems may be vulnerable to previously underappreciated synoptic-scale variations characterized by low wind and/or surface solar radiation. Here we use western North America as a case study region to investigate the historical meteorology of weekly-scale “droughts” in potential wind power, potential solar power and their compound occurrence. We also investigate the covariability between wind and solar droughts with potential stresses on energy demand due to temperature deviations away human comfort levels. We find that wind power drought weeks tend to occur in late summer and are characterized by a mid-level atmospheric ridge centered over British Columbia and high sea level pressure on the lee side of the Rockies. Solar power drought weeks tend to occur near winter solstice when the seasonal minimum in incoming solar radiation co-occurs with the tendency for mid-level troughs and low pressure systems over the U.S. southwest. Compound wind and solar power drought weeks consist of the aforementioned synoptic pattern associated with wind droughts occurring near winter solstice when the solar resource is at its seasonal minimum. We find that wind drought weeks are associated with high solar power (and vice versa) both seasonally and in terms of synoptic meteorology, which supports the notion that wind and solar power generation can play complementary roles in a diversified energy portfolio at synoptic spatiotemporal scales over western North America
    corecore