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Empirical Prediction of Short‐Term Annual Global
Temperature Variability
Patrick T. Brown1 and Ken Caldeira2

1Department of Meteorology and Climate Science, San Jose State University, San Jose, CA, USA, 2Department of Global
Ecology, Carnegie Institution for Science, Stanford, CA, USA

Abstract Global mean surface air temperature (Tglobal) variability on subdecadal timescales can be of
substantial magnitude relative to the long‐term global warming signal, and such variability has been
associated with considerable environmental and societal impacts. Therefore, probabilistic foreknowledge of
short‐term Tglobal evolution may be of value for anticipating and mitigating some course‐resolution climate‐
related risks. Here we present a simple, empirically based methodology that utilizes only global spatial
patterns of annual mean surface air temperature anomalies to predict subsequent annual Tglobal
anomalies via partial least squares regression. The method's skill is primarily achieved via information on
the state of long‐term global warming as well as the state and recent evolution of the El Niño–Southern
Oscillation and the Interdecadal Pacific Oscillation. We test the out‐of‐sample skill of the methodology using
cross validation and in a forecast mode where statistical predictions are made precisely as they would
have been if the procedure had been operationalized starting in the year 2000. The average forecast errors for
lead times of 1 to 4 years are smaller than naïve benchmarks on average, and they perform favorably relative
to most dynamical Global Climate Models retrospectively initialized to the observed state of the climate
system. Thus, this method can be used as a computationally efficient benchmark for dynamical model
forecast systems.

Plain Language Summary Year‐to‐year global temperature variability can be large compared to
the long‐term progression of global warming, and such year‐to‐year variability has been shown to have
considerable environmental and societal effects. Thus, approximate foreknowledge of yearly global
temperature deviations should be of value for anticipating some climate impacts. This study presents a
relatively simple, empirical method for predicting year‐to‐year global temperature. We show that
information on the global spatial patterns of surface air temperature alone can be used to skillfully predict
global average temperature 1 to 4 years ahead of time.We find that themethod performs favorably compared
to predictions from much more computationally expensive Global Climate Models.

1. Introduction

Human‐caused increases in the atmospheric concentration of well‐mixed greenhouse gases are causing pro-
nounced global climate change on decadal to centennial timescales (Bindoff et al., 2013). Perhaps the most
recognized measure of this change is the long‐term effect on global mean surface air temperature (SAT)
(Tglobal), which has increased at a rate of ~0.14°C per decade since the middle of the twentieth century
(Hansen et al., 2010). Superimposed on top of this externally forced decadal‐ to centennial‐scale warming
is variability which is mostly unforced and spontaneously generated from interactions internal to the
ocean‐atmosphere‐land system (Bindoff et al., 2013). Such Tglobal variability is not as persistent as the con-
temporary externally forced signal, but it can be substantial in magnitude over subdecadal timescales.

For example, Tglobal increased by ~0.42°C between 2011 and 2016 which is equivalent to approximately three
decades worth of long‐term warming at the aforementioned historically observed rate (Hansen et al., 2010).
This suggests that, on subdecadal timescales, deviations in Tglobal can approach 0.5°C in magnitude which
has recently been associated with profound impacts on climate‐related risk (Hoegh‐Guldberg et al., 2018).
For instance, the aggregate probability of exceeding the preindustrial‐defined 99.9th percentile of daily heat
extremes over land increases by 50% to 100% with such a magnitude shift in Tglobal (Fischer & Knutti, 2015).
In addition to being of large relative magnitude, subdecadal Tglobal variability also has an extensive spatial
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footprint in the sense that approximately 87% of the global surface and 99% of the global land surface exem-
plifies a positive linear relationship between local annual unforced SAT deviations and unforced Tglobal
deviations (Figure 1).

Given the extensive spatial footprint and large magnitude of subdecadal Tglobal variability, it is perhaps
unsurprising that such variability has been linked to considerable environmental and societal impacts.
Unforced subdecadal global temperature variability, typically associated with the state of the El Niño–
Southern Oscillation (ENSO) (Trenberth et al., 2002) and its related effects (McPhaden et al., 2006),
has been connected to global patterns of primary production (Behrenfeld et al., 2001), the distribution
of sea bird, marine mammal, and fish populations (Stenseth et al., 2002), as well as coral bleaching
(Walther et al., 2002). Such variability has also been linked to variation in societal phenomena including
agricultural output (David & Christopher, 2007), gross domestic product growth (Burke et al., 2015),
monetary inflation (Cashin et al., 2017), energy demand (Deschênes & Greenstone, 2011), human mor-
tality (Deschênes & Greenstone, 2011), and civil conflicts (Hsiang et al., 2011). In addition to these sub-
stantive impacts, subdecadal Tglobal variability tends to attract significant attention in popular media
(Gillis, 2017), which influences the public perception of the urgency/necessity of implementing
climate‐change mitigation policy.

Given the above concerns, there is potentially substantial utility in the approximate foreknowledge of
annual Tglobal values (here, anomalies with respect to the 1951–1980 mean). However, forecasting the parti-
cular state of the climate system from months to years ahead of time is notoriously difficult because it is a
timescale long enough such that chaos significantly degrades forecasts made based on initial conditions
but a timescale too short for typical externally forced signals to strongly emerge from the “noise” of unforced
variability (Kirtman et al., 2013; Meehl et al., 2009).

Despite these challenges, there has been an emphasis on annual to decadal climate prediction using both
statistical (Krueger & Storch, 2011; Newman, 2013; Sévellec & Drijfhout, 2018; Suckling et al., 2017;
Thomas et al., 2008) and dynamical models (Keenlyside et al., 2008; Kirtman et al., 2013; Smith et al., 2007).
A particular focus has been placed on the use of dynamical Global Climate Models (GCMs) initialized to the
observed state of the climate system and run forward in time, in a manner similar to the procedure used in
numerical weather prediction (Keenlyside et al., 2008; Kirtman et al., 2013; Smith et al., 2007). This method
has exhibited potential, especially in certain locations, but these GCM‐based predictions come with note-
worthy challenges such as large computational expense, incomplete observations for initialization, the
necessity to correct for mean biases, and the necessity to correct for model drift due to “coupling shock”
(Meehl et al., 2013). Furthermore, accurate GCM simulation of internal modes such as ENSO and its telecon-
nections is of utmost importance for this application but many GCMs still struggle in their simulation of phy-
sical processes key to ENSO dynamics (Bellenger et al., 2013).

In this study, we introduce a complement to GCM‐based decadal prediction that makes use of historically
observable empirical relationships between the state of the climate system at any given time and subsequent
annual Tglobal anomalies. Subdecadal Tglobal anomalies are primarily related to modes of variability in the
climate system such as ENSO (Brown et al., 2014; Trenberth et al., 2002), and thus, some previous efforts
to statistically forecast subdecadal Tglobal have relied primarily on the use of ENSO indices as predictor vari-
ables (e.g., (Smith et al., 2007; Suckling et al., 2017)). However, these methods generally require an ad hoc
calculation of an ENSO index which may not fully capture the influence of ENSO on Tglobal.
Furthermore, other modes of variability like the Interdecadal Pacific Oscillation (IPO; (Meehl et al., 2013)),
the Atlantic Multidecadal Oscillation (Chylek et al., 2014), the North Atlantic Oscillation (Li et al., 2013),
and variability over the Southern Ocean (Brown et al., 2017) have all been suggested to influence global tem-
perature, but they are often neglected as potential predictors of Tglobal. Part of the challenge is that many of
the aforementioned modes are correlated with each other (either positively or negatively) which precludes
their use in statistical frameworks that assume linear independence of predictors.

With the above considerations in mind, we seek a relatively simple empirical methodology for predicting
Tglobal deviations that (a) allows predictors of Tglobal to be globally comprehensive and thus does not arbitra-
rily exclude modes of variability originating from, for example, high latitudes; (b) creates predictors based on
the relationship of the data to predictands (as opposed to using, e.g., a priori and/or ad hoc climate indices);
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and (c) creates predictors that are uncorrelated with each other. We achieve these goals via the use of partial
least squares regression (PLSR (Brown & Caldeira, 2017; Wold, 1966)).

2. Methods

We apply PLSR to the problem of forecasting Tglobal anomalies in the following way. First, observed globally
gridded SAT (latitude, longitude, and annual time) anomalies were obtained from the four primary instru-
mental observational data sets: HadCRUT4 (Morice et al., 2012), NASA GISTEMP (Hansen et al., 2010),
NOAA (Vose et al., 2012), and Berkeley Earth Surface Temperature (Rohde et al., 2013).

Second, PLSR was performed between predictors made up of gridded SAT fields (normalized locally by their
standard deviation across time) and predictands of subsequent Tglobal deviations. SAT fields were used as
predictor variables of Tglobal because they represent some of the longest and most spatially comprehensive
data available and because much information on external forcings as well as the state of various modes of
variability in the climate system are contained in the SAT field.

The PLSR framework is similar to that of a multiple linear regression (MLR) problem. In MLR, application

to the current problem would entail finding coefficients, b
!
, such that the mean squared residuals ( r!) are

minimized in the system,

y⃑t ¼ X½ �t−1 b
!þ r ⃑; (1)

where y!twould be annual Tglobal anomalies as a function of time (e.g., from 1901–2019) and thematrix [X]t‐1
would contain the global spatial field of SAT which precedes the Tglobal anomalies in time (e.g., where the
rows would correspond to years 1900–2018 and the columns would correspond to each individual gridded
location). Because of the high degree of spatial autocorrelation in the SAT predictor fields, the columns in
[X]t‐1 will inevitably be highly collinear, and thus, [X]t‐1 will be well‐below full rank. This precludes the
application of MLR to this problem. However, PLSR offers a solution to this issue by creating linear combi-
nations of the columns in [X]t‐1 (PLSR components) that represent a large portion of [X]t‐1's variability. The
procedure is similar to principle component analysis, but instead of seeking components that explain the

maximum variability in [X]t‐1 itself, PLSR seeks components in [X]t‐1 that explain the variability in y!t .
Ultimately, PLSR is akin to the MLR procedure performed on a matrix [Z]t‐1 containing a relatively low
number of PLSR components which represent much of the variability in [X]t‐1,

Figure 1. Spatial footprint of annual unforced global mean surface air temperature variability showing that the majority of the surface displays a positive
relationship with the global mean. Colors represent the magnitude of the linear regression coefficient (slope) between local unforced (subdecadal timescale)
annual surface air temperature deviations and global mean unforced (subdecadal timescale) annual surface air temperature deviations. Stippling indicates that
the linear regression coefficient is not statistically different from zero at the 90% confidence level or above. Data are from the GISTEMP data set and spans 1950–
2019. This time span was selected due to it being the longest time period with near‐global spatial coverage. Unforced variability was isolated from forced
variability so that subdecadal variations could be highlighted rather than the long‐term trend. This decomposition between forced and unforced variability was
achieved via multiple linear regression against historical radiative forcings.
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y ⃑t ¼ Z½ �t−1 β
!þ r ⃑: (2)

Below, we show results using four PLSR components but conclusions are not sensitive to this specific num-
ber. We carry out PLSR using the MATLAB™ function “plsregress” (https://www.mathworks.com/help/
stats/plsregress.html). This function performs PLSR regression using the SIMPLS algorithm (see also meth-
ods in (Brown & Caldeira, 2017) for more details).

Equation 2 is for the specific case of predicting Tglobal anomalies from only the previous year's SAT field.
However, in our application, we use the previous 2 years to predict the next 4 years of Tglobal deviations.
Two lagged years were used because we found that there was some increase in skill by including information
on not only the most recent state but also on the evolution of the SAT field. The 4‐year lead time was chosen
as the maximum lead time because we found that themethod was outperformed by the naïve benchmarks in
some of the observational data sets beyond 4 years (Figure S4 in the supporting information).

When using two preceding years, the matrices are horizontally concatenated prior to the application of
PLSR. So in our application, equation 1 becomes

y⃑t ¼ X½ �t−1j X½ �t−2
� �

b
!þ r ⃑: (3)

The problem was then conducted separately for each lead time. So for lead times of 2, 3, and 4 years,
equation 3 becomes

y ⃑tþ1 ¼ X½ �t−1j X½ �t−2
� �

b
!þ r ⃑; (4)

y ⃑tþ2 ¼ X½ �t−1j X½ �t−2
� �

b
!þ r ⃑; (5)

and

y ⃑tþ3 ¼ X½ �t−1j X½ �t−2
� �

β
!þ r ⃑; (6)

respectively.

2.1. LASSO Regularization

In order to prevent overfitting, we implement the least absolute shrinkage and selection operator regulariza-
tion (Tibshirani, 1996) (https://www.mathworks.com/help/stats/lasso.html) using only the PLSR forecast
and the most recent Tglobal anomaly as the two predictor variables. This serves as a check against overfitting
in the sense that it damps the influence of predictors that cause poor predictions on out‐of‐sample data. The
overall effect of this procedure is that under circumstances of little to no out‐of‐sample skill, the predictions
will revert to the mean value of the predictand. Henceforth, we refer to our overall procedure as the
BC2020 method.

2.2. Validation

Model validation was achieved via leave‐one‐out cross validation for years prior to 2000 (which we refer to as
“hindcast mode”) and through completely out‐of‐sample predictions made on the post‐2000 data (which we
refer to a “forecast mode”).

Under leave‐one‐out cross validation, each Tglobal anomaly in the time series took a turn acting as a test year,
with the remaining years designated as training years. Each test year was held out of the procedure such that
the method was blind to the correct Tglobal anomaly for the test year. PLSR was then performed on the train-
ing years, and the resulting regression coefficients were used to predict the Tglobal deviation for the test year.
If the predictand lead time was 1 year, and two lagging years were used as predictors, equation 1 could be
expanded as,
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Tglobalt3
Tglobalt4
Tglobalt5

…

Tglobaltn

2
6666664

3
7777775
¼

1 SATt2;loc1 … SATt2 ;lock … SATt1 ;loc1 … SATt1 ;lock

1 SATt3;loc1 … SATt3 ;lock … SATt2 ;loc1 … SATt2 ;lock

1 SATt4;loc1 … SATt4 ;lock … SATt3 ;loc1 … SATt3 ;lock

… … … … … … … …

1 SATtn−1 ;loc1 … SATtn−1 ;lock … SATtn−2 ;lock … SATtn−2 ;lock

2
6666664

3
7777775
·

b0

b1

b2

…

bn·k

2
6666664

3
7777775
þ

rt3
rt4
rt5
…

rtn

2
6666664

3
7777775
;

(7)

where the subscript t refers to annual time and the subscript loc refers to the global gridded location. If the
Tglobal anomaly corresponding to the fourth year in data set (t4, second row in equation 7) was designated as
the test year, then the row corresponding to this year would be deleted and Tglobalt4 would be hindcast with
regression coefficients (b⃑) that were calculated without knowledge of the corresponding predictor‐predictand
combination. Note that information form these deleted years (t4, t3, and t2) still appear in the linear system
elsewhere (e.g., SAT from t2 still informs the prediction for Tglobalt3).

In hindcast mode, each year took a turn acting as a test year and the errors between the forecast Tglobal
anomalies and the observed Tglobal anomalies were used to summarize the predictive skill of the method
and inform the empirically derived confidence intervals of the forecast.

The predictive skill of the BC2020 model is also quantified using forecast mode where its predictions are
tested on completely out‐of‐sample data in the years following 2000. Forecast mode means that the proce-
dure is run just as it would have been if it was operationalized starting in the year 2000. That is, no informa-
tion from future data is used for any part of the training. Specifically, forecasts are made each year (at 1‐ to
4‐year lead times) and model parameters are updated each year prior to the next year's forecast.

2.3. Note on Treatment of Forced Variability

Interannual Tglobal variability is the result of both forced and unforced variability, and many previous efforts
have attempted to partition this variability explicitly into these two components (e.g., Brown et al., 2014;
Foster & Rahmstorf, 2011; Lean & Rind, 2008). Here, we do not attempt to partition temperature variability
into forced and unforced components and instead we allow the PLSR procedure itself to partition most of the
forced variability into the first PLSR component. Wemade this choice because, despite much research on the
issue (Frankcombe et al., 2015; Mann et al., 2014), the isolation of unforced from total temperature variabil-
ity remains amajor challenge. When trying to do the decomposition, insufficient temporal/spatial variability
of historical forcings may cause an insufficient amount of historical variability to be categorized as forced
variability, and thus, too much variability may be categorized as unforced variability. On the other hand,
some studies have suggested that the best estimates of decadally varying forcing may have been implicitly
overfit to observations to some degree (Tung & Zhou, 2013). Under this view, the observed multidecadal
temperature variability would contain a substantial unforced component and attempts to partition variabil-
ity into a forced component and unforced component may be biased in favor of allocating too much varia-
bility into the forced designation and necessarily leaving too little variability in the unforced designation.

Given that there is not a clear consensus on how to best decompose forced and unforced variability and given
that we prioritized simplicity in our methodology, we chose to feed the PLSR procedure the raw temperature
data sets without any preprocessing. This meant that the PLSR procedure itself partitionedmost of the forced
variability into the first PLSR component which we refer to as the global warming component.

This methodological decision has the added benefit of allowing the procedure to be completely independent
of assumptions about the time evolution of external forcings and/or their representation in dynamical GCM
simulations. This is preferable if the method is to serve as a benchmark or point of comparison for
dynamical GCMs.

Additionally, a major benefit of not attempting to remove forcing as a preprocessing step is that it eliminates
the risk of inadvertently feeding in information that the procedure would not have in an operationalized set-
ting. When the procedure is run in forecast mode, the lack of data preprocessing guarantees that there is no
information leakage that would cause spuriously low prediction errors. Thus, forecast mode prediction
errors incorporate uncertainty in both forced and unforced variability which is desirable when informing
confidence intervals going forward in a real‐world setting. However, this also means that because the
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method cannot anticipate abrupt changes in external forcings, it is at an inherent disadvantage compared to
GCMs that incorporate retrospective time‐varying forcings and statistical models trained on only the
unforced component of variability.

2.4. Ability of BC2020 Method to Forecast Idealized Signals

As a demonstration of concept, we first employ the BC2020 method on idealized synthetic data. Specifically,
we generated synthetic data over the period 1880–2017 which consisted of combinations of sine waves
(Figures 2a and 2b) and random noise (not shown). We inserted one oscillation in the Northern
Hemisphere grid points and one in the Southern Hemisphere grid points, with each grid point receiving
its own random noise time series. We then ran the BC2020 method on the gridded data. Cross‐validated
hindcasts as well as an out‐of‐sample forecast are shown in Figure 2c. It can be seen that the methodology
is able to learn the relationships between SAT patterns and subsequent Tglobal anomalies. This is particularly
apparent in the forecast period (2014–2017 in Figure 2c) where the method predicts an uptick in Tglobal
(based on previous patterns) even though Tglobal had been trending down since ~2004.

2.5. CMIP5 Decadal Hindcast Experiments

An alternativemethod for predicting Tglobal deviations comes from the observationally initialized GCMs that
participated in the CMIP5 decadal hindcast experiments (Taylor et al., 2011). These GCMs were initialized to
various aspects of the observed state of the climate system (Table 1) and run forward in time, incorporating
retrospective estimates of external forcings over the given forecast period (e.g., hindcasts starting in 1990
incorporated forcing in 1991 associated with theMount Pinatubo volcanic eruption even though that forcing
was not predictable in advance). Therefore, the decadal hindcast experiments incorporate retrospective
information on external forcing and thus their hindcast performance is at an advantage relative to the
BC2020 method. There are 18 GCMs that participated in this experiment. Several GCMs use multiple initi-
alization methods. These GCMs have some ensemble members which are initialized to the absolute
observed anomalies of variables (full field initialization), while some ensemble members are initialized with
anomalies from observed climatology (anomaly initialization). We treat GCMs' ensemble sets that use differ-
ent initializationmethods as being effectively different GCMs. This treatment has the effect of expanding the
number of GCMs in this experiment from 18 to 24 (Table 1).

When GCMs are initialized to observations, they have a tendency to drift toward their own preferred climate
state which is often biased relative to observations. In order to correct for both the bias and the drift, we apply
the standard method of drift correction recommended by the International CLIVAR Project office. This
method is described below and illustrated for a single GCM (bcc‐csm1–1) in Figure S1.

The raw Tglobal hindcasts are represented as Zjτwhere j is the initial forecast time (j= 1,…n) and τ is the fore-
cast lead time in years (τ = 1,…m; Figure S1a). The initial forecast time depends on the model (Table 1). The
corresponding observations for which the hindcasts are compared against are represented as Vjτ

(Figure S1c). For the main results, we show RMSEs with respect to GISTEMP but RMSEs with respect to
the other three observational data sets are shown in Figure S4. The average anomalies over the entire series
of forecasts are given by

Zτ ¼ 1
n
∑n

j¼1 Zjτ ;

V τ ¼ 1
n
∑n

j¼1Vjτ ;

(Figures S1d and S1e, respectively).

Drift is calculated on a model‐by‐model basis as the difference between the ensemble mean forecasts and
observations over all cases,

dτ ¼ Zτ − V τ ;

(Figure S1f).

The drift (which implicitly contains any mean bias) is then subtracted from the raw hindcasts to obtain
bias/drift corrected hindcasts,
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bZjτ ¼ Zjτ − dτ ¼ V τ þ Zjτ − Zτ
� �¼ V τ þ Z′

jτ ;

(Figures S1g and S2), where Z′

jτ ¼ Zjτ − Zτ is the anomaly of the raw forecast relative to the forecast aver-

age over all forecast periods. We perform this procedure in a hold‐one‐out cross‐validated manner such
that the anomalies over any given hindcast time period of evaluation are not included in the bias/drift cal-
culation for that time period.

Other studies have suggested yet more involved postprocessing of the decadal hindcast experiments in which
the time‐dependent aspect of the drift is taken into account. Such postprocessing requires free‐running his-
torical experiments which are not available for all of the CMIP5 GCMs considered here, and thus, we use
time‐independent drift correction.

2.6. Comparison to Other Statistical Methods

Several other studies have published statistical procedures capable of predicting Tglobal on subdecadal time-
scales (Krueger & Storch, 2011; Newman, 2013; Sévellec & Drijfhout, 2018; Suckling et al., 2017; Thomas
et al., 2008). None of these procedures are directly comparable to the method outlined in this work because
different choices are made regarding the treatment of the forced component of variability, the target Tglobal
data set, the time span of the training data, the time span of the test data, and the rigor of the cross validation
(Table S1). Nevertheless, we provide comparisons of the BC2020 method to the most analogous results from
these previous studies (green lines andmagenta dots in Figure S4). However, a rigorous comparison of meth-
ods would require a standardization of method protocols, training data sets, evaluation data sets, and so forth
and is beyond the scope of this study.

One advantage of our approach over some previous studies comes from the simplicity of using only the ante-
cedent SAT field to derive predictors of Tglobal. This means that our method requires very little preprocessing
and requires no decisions to be made about which particular forcings should be included as predictors and
which data sets of those forcings should be used (different groups have produced different estimates of
time‐varying aerosol forcing for example).

Figure 2. BC2020 method applied to idealized synthetic data. (a, b) Sine curves placed in the Northern Hemisphere
gridpoints (a) and Southern Hemisphere grid points (b) in addition to random noise (not shown). (c) PLSR
predictions at four lead times using leave‐one‐out cross validation in the gray‐shaded region and making an out‐of‐
sample prediction at the end of the time period.

10.1029/2020EA001116Earth and Space Science

BROWN AND CALDEIRA 7 of 14



3. Results
3.1. Hindcast Skill Comparison

Figure 3 shows the root‐mean‐square error (RMSE) of Tglobal hindcasts relative to observations for the
BC2020 method (blue), a persistence benchmark (black), an extrapolation of a linear trend benchmark
(black), and GCM decadal hindcast experiments (red) using the NASA GISTEMP data set as observations
(other three data sets shown in Figure S4). The RMSEs of the BC2020 method for both cross‐validated
1900–2000 predictions (hindcast mode) and completely out‐of‐sample predictions post 2000 (forecast mode)
are shown.

The persistence benchmark uses the average of the previous 5 years, and the extrapolation of the linear trend
benchmark uses the previous 20 years to fit the trend. Both of these time periods were chosen to minimize
the forecast errors from these naïve benchmarks and thus make them as difficult to outperform as possible.

Averaged across the prediction lead times of 1 to 4 years, the BC2020 method produced lower RMSEs than
the two naïve benchmarks and lower RMSEs than the mean RMSE of the initialized GCMs. Perhaps surpris-
ingly, the mean GCM had a larger RMSE than the naïve benchmarks which highlights the challenges asso-
ciated with dynamical climate prediction at this timescale and suggests that the average GCM has difficulty
simulating downstream teleconnections between various modes of variability and subsequent
Tglobal deviations.

Table 1
Information on the CMIP5 GCMs That Participated in the Decadal Hindcast Experiments

Effective model
number Model name

Number of ensemble
members

Initialization
method Start years

1 bcc‐csm1–1 4 i1 1961–2007

2 CanCM4_i2 10 i1 1962–1980, 1982–2005, 2007–2012

3 CCSM4 10 i1 1976, 1986, 1991, 1996, 2001–2007

4 CFSv2–2011 4 i1 1981, 1982, 1984, 1986, 1991, 1994, 1996, 1997, 1999, 2001, 2004, 2006, 2007, 2010,
2011

5 CMCC‐CM 1 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006

6 CNRM‐CM5 10 i1 1960, 1961, 1965, 1966, 1970, 1971, 1975, 1976, 1980, 1981, 1985, 1986, 1990, 1991,
1995, 1996, 2000, 2001, 2005, 2006

7 EC‐EARTH 10 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006

8 FGOALS‐g2 3 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006

9 FGOALS‐s2 3 i1 1966, 1971, 1976, 1981, 1986, 1996, 2001

10 GEOS‐5 3 i1 1961–1981, 1986–2010

11 GFDL‐CM2p1 10 i1 1962–2013

12 HadCM3 10 i2 1961–2010

13 IPSL‐CM5A‐LR 6 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006

14 MIROC4h 6 i1 1966, 1971, 1976, 1986, 1991, 1996, 2001

15 MIROC5 6 i1 1960, 1962–1980, 1982–2005, 2007–2011

16 MPI‐ESM‐LR 10 i1 1961–2011

17 MPI‐ESM‐MR 3 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001–2011

18 MRI‐CGCM3 9 i1 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006, 2011, 2012

19 CanCM4_i2 10 i2 1966, 1971, 1976, 1986, 1991, 1996, 2001–2005, 2007–2009

20 CFSv2–2011_i2 3 i2 1961, 1966, 1971, 1976, 1981, 1986, 1991

21 CMCC‐CM_i2 1 i2 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006

22 CMCC‐CM_i3 1 i3 1961, 1966, 1971, 1976, 1981, 1986, 1991, 1996, 2001, 2006

23 EC‐EARTH_i3 10 i3 1961–2006

24 HadCM3_i3 10 i3 1961–2010

Note. RMSEs in Figure 3 are calculated over all available ensemble members and over all start years for each effective GCM. The initialization method corre-
sponds to full field initialization (i1 and i3) or anomaly initialization (i2).
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3.2. Hindcasts and Forecasts

Figures 4 and 5 shows the BC2020 method's hindcast and forecast predictions of Tglobal at lead times of 1 to
4 years applied to the NASA GISTEMP data set (the other three data sets are shown in Figure S3).

Scientific discussion of decadal climate variability and a potential short‐term hiatus in global warming began
emerging around the latter portion of the 2000s decade (Easterling & Wehner, 2009). In 2004, the BC2020
method would have predicted a slight cooling through 2008 (the 4‐year lead time forecast valid in 2008,
magenta dot, was close but below the actual value) and thus might have hinted at the emergence of what
would come to be known as the hiatus (Medhaug et al., 2017). By 2012, there was much scientific discussion
of the global warming hiatus (Kaufmann et al., 2011; Meehl et al., 2011; Solomon et al., 2010, 2011) and its
potential to persist. In that year, the BC2020 method predicted that the Tglobal was primed to experience an
uptick over the subsequent 4 years, and it predicted a new historical record in 2016 (magenta dot for 2016).
This surge in Tglobal did come to pass, and 2016 did set the historical record, although it surpassed the mag-
nitude of the BC2020 forecasted anomaly. The BC2020 method has produced some forecasts that were off by
a large margin as well. For example, the 1‐year lead time errors for 2006 and 2014 were both about −0.2°C.
Note, however, that these errors help inform the confidence intervals for both the hindcasts and forecasts
over the period 2020–2023.

The spatial patterns and time evolution of SAT variability that are the most relevant to the prediction of sub-
sequent Tglobal anomalies are illustrated in Figure 6. Figures 6a, 6d, and 6g show the PLSR scores (analogous
to the principle component time series in principle component analysis) and the loadings (analogous to the
empirical orthogonal Functions) of the first three PLSR components which explain 85%, 5%, and 3% of the
variance in subsequent Tglobal variability at the 1‐year lead time. Positive PLSR loadings displayed on the
maps denote where local warm SAT anomalies are associated with subsequent warm Tglobal anomalies,
and negative PLSR loadings denote where local cool SAT anomalies are associated with subsequent warm
Tglobal anomalies.

The first PLSR component (Figures 6a–6c) largely corresponds to the global warming signal associated with
increases in well‐mixed greenhouse gas concentrations, and it is the dominant explanation of variability
since 1900. It is apparent that this component corresponds to an externally forced signal due to its spatial
homogeneity (Sedláček & Knutti, 2012). Variations in incoming solar radiation would also likely be parti-
tioned into this PLSR component because they would also have a spatially homogenous signature.

Figure 3. Prediction errors for various methods of anticipating global mean surface air temperature anomalies. The root‐
mean‐square error (RMSE) is shown between predictions of global mean surface air temperature anomalies and
observed global mean surface air temperature anomalies as a function of prediction lead time. The RMSEs for the GCM
decadal hindcasts are calculated over time periods that vary by model as described in TableS1. Note that the GCM
decadal hindcast experiments incorporate retrospective information on external forcing, and thus, their hindcast
performance is at an advantage relative to the BC2020 method.
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The second PLSR component (Figures 6d–6f) shows that warm Tglobal anomalies (apart from the global
warming signal) are preceded by cool local SAT anomalies in the tropical Pacific 2 years prior (Figure 6e).
However, 1 year prior to a warm Tglobal anomaly (again relative to the long‐term global warming signal),
there tends to be a warm anomaly over the equatorial Pacific (Figure 6f). This pattern indicates that warm

Figure 4. (a–d) Out‐of‐sample predictions for each lead time as well as the forecasts for the years 2020–2023. Predictions for years through 2000 utilize leave‐one‐
out cross validation and predictions for the years following 2000 are made precisely as they would have been if the method was operationalized starting in the
year 2000 (model parameters are tuned only on past data and progressively updated each year to make the forecasts). Forecasts for 2020–2023 show ±1σ
(thick lines) and ±2σ (thin lines) confidence intervals which are derived from the RMSE of the forecast mode errors. The gray shading represents the ±1σ
confidence interval for the trend benchmark which is a forecast that projects the given year's global temperature anomaly as being an extrapolation of a trend fit to
the previous 20 years. The GISTEMP data set is used for observations here, but results are similar for the other three global temperature data sets considered
(Figure S3).

Figure 5. Same information as Figure 4 but displayed on a single figure. The legend displays the prediction root mean
square errors (RMSEs) for hindcast mode, forecast mode, and for the linear trend forecast, respectively, for each lead
time.
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Tglobal deviations (apart from the first PLSR component) are associated with a transition from La Niña‐like
conditions 2 years prior to El Niño‐like conditions 1 year prior to the year in consideration.

The third PLSR component shows that warm Tglobal anomalies are associated with a positive IPO. The shar-
pening of the IPO pattern from 2 years to 1 year prior to the prediction year indicates that positive Tglobal
anomalies are associated with an antecedent strengthening of an already positive IPO state. These findings
are consistent with independent methodologies that have highlighted the Pacific's prominence in the mod-
ulation of unforced Tglobal variability (Brown et al., 2014; England et al., 2014).

Overall, the first three PLSR components agree with the broader literature that the long‐term Tglobal evolu-
tion can be predicted by the state of global warming, and subsequent refinements of the Tglobal anomaly for
any given year can be made by incorporating information on the state of ENSO and of the IPO.

3.3. True Forecast

Training on data from 1900–2019 and using SAT deviations from 2018–2019 as predictor fields, the BC2020
method forecasts Tglobal anomalies, with 2σ uncertainty ranges of +0.98°C (±0.40), +0.98°C (±0.44),
+0.91°C (±0.44), and +0.95°C (±0.48) above the 1951–1980 mean for the NASA GISTEMP data set
(Figures 4 and 5). The BC2020 method's forecast for 2020 and 2021 suggests values nearly equal to that of
2019 before slightly lower values in 2022 and 2023 (Figures 4 and 5). Thus, the BC2020 method does not
necessarily foresee the 2016 global temperature record being broken in the forecast period.

Figure 6. (a, d, g) Partial least squares regression scores (analogous to principle component time series) illustrating the temporal variation of the modes of
variability shown in the maps of the corresponding row. (b, c, e, f, h, i) Partial least squares regression loading maps (analogous to empirical orthogonal
function maps) for the first three components associated with a subsequent year's global temperature anomaly (i.e., 1‐year lead time). Positive loadings indicate
that a warm local surface air temperature anomaly at that location is associated with a warm subsequent global temperature anomaly, and negative loadings
indicate that a cool local surface air temperature anomaly at that location is associated with a warm subsequent global temperature anomaly. These loadings were
calculated over the entire historical time period with no data held out. (j, k) Local surface air temperature anomalies for 2 years (2018–2019) informing the BC2020
method's forecast for 2020–2023.
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4. Discussion and Conclusion

The performance of the BC2020 method is encouraging, but the results shown do necessitate a few caveats.
First, the physical mechanisms that can be surmised from statistical relationships are necessarily limited.
Insight on the mechanistic underpinnings of the BC2020 method's skill can be informed from PLSR loading
patterns (Figure 6), but the most comprehensive physical understanding of interannual Tglobal variability
will ultimately involve the use of GCMs. Furthermore, GCMs provide geographic‐specific predictions for
many variables which are necessary for developing process understanding and for anticipating many
climate‐related impacts. Thus, the method presented here should not be considered a replacement for
GCM decadal prediction but rather it should be viewed as a complement and/or a benchmark to which
GCM predictions can be compared.

Second, the method presented here is only able to forecast Tglobal deviations that imprint leading indicators
about their subsequent evolution in global SAT fields. Thus, short‐term changes in forcings like those asso-
ciated with large volcanic eruptions or major shifts in socioeconomic activity and thus emission cannot be
anticipated and their occurrence would reduce the accuracy our forecasts. However, this aspect of unpredict-
ability is included in our empirically informed confidence intervals to some degree. For example, the meth-
od's Tglobal predictions for 1992 were all higher than what actually occurred because it could not anticipate
the mid‐1991 Mount Pinatubo eruption. This prediction error does get included in the reported RMSEs at all
lead times. Thus, if the frequency of future unpredictable short‐term forcings is similar to the past, the meth-
od's confidence intervals will accurately represent uncertainty on average.

A final caveat that we will note here is that statistical hindcasts can generally not be validated as rigorously
as genuine forecasts. We demonstrate the robustness of our hindcast results using cross validation as well as
implementing the procedure on completely held‐out test data. Despite these measures, foreknowledge of the
correct answers can implicitly bias the research process in a direction of overfitting. Thus, truly rigorous vali-
dation of the method used here will only be achieved as actual out‐of‐sample forecasts are produced and
compared with future observations.

Despite the above caveats, the relatively simple empirical method laid out in this study shows skill in predict-
ing interannual global mean SAT variability and even performs better than most dynamical GCMs at this
task. This indicates that a substantial fraction of the useful information for constraining short‐term Tglobal
evolution is contained in the SAT field of the preceding years (the only predictor variable used here).
Given that short‐term Tglobal variability is of substantial magnitude relative to the long‐term trend and it
has an extensive global spatial footprint with broad ecological and societal impacts, this tool represents a
computationally inexpensive means of anticipating and possibly mitigating some short‐term climate effects.
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