53 research outputs found

    Discretized Diffusion Processes

    Get PDF
    We study the properties of the ``Rigid Laplacian'' operator, that is we consider solutions of the Laplacian equation in the presence of fixed truncation errors. The dynamics of convergence to the correct analytical solution displays the presence of a metastable set of numerical solutions, whose presence can be related to granularity. We provide some scaling analysis in order to determine the value of the exponents characterizing the process. We believe that this prototype model is also suitable to provide an explanation of the widespread presence of power-law in social and economic system where information and decision diffuse, with errors and delay from agent to agent.Comment: 4 pages 5 figure, to be published in PR

    Black Rings in Taub-NUT and D0-D6 interactions

    Get PDF
    We analyze the dynamics of neutral black rings in Taub-NUT spaces and their relation to systems of D0 and D6 branes in the supergravity approximation. We employ several recent techniques, both perturbative and exact, to construct solutions in which thermal excitations of the D0-branes can be turned on or off, and the D6-brane can have BB-fluxes turned on or off in its worldvolume. By explicit calculation of the interaction energy between the D0 and D6 branes, we can study equilibrium configurations and their stability. We find that although D0 and D6 branes (in the absence of BB fields, and at zero temperature) repeal each other at non-zero separation, as they get together they go over continuosly to an unstable bound state of an extremal singular Kaluza-Klein black hole. We also find that, for BB-fields larger than a critical value, or sufficiently large thermal excitation, the D0 and D6 branes form stable bound states. The bound states with thermally excited D0 branes are black rings in Taub-NUT, and we provide an analysis of their phase diagram.Comment: 50 pages, 8 figures; v3: minor changes and references added; v4: improved figs. 7 and 8, matches with published versio

    Truncation of power law behavior in "scale-free" network models due to information filtering

    Full text link
    We formulate a general model for the growth of scale-free networks under filtering information conditions--that is, when the nodes can process information about only a subset of the existing nodes in the network. We find that the distribution of the number of incoming links to a node follows a universal scaling form, i.e., that it decays as a power law with an exponential truncation controlled not only by the system size but also by a feature not previously considered, the subset of the network ``accessible'' to the node. We test our model with empirical data for the World Wide Web and find agreement.Comment: LaTeX2e and RevTeX4, 4 pages, 4 figures. Accepted for publication in Physical Review Letter

    Boundary effects in a random neighbor model of earthquakes

    Full text link
    We introduce spatial inhomogeneities (boundaries) in a random neighbor version of the Olami, Feder and Christensen model [Phys. Rev. Lett. 68, 1244 (1992)] and study the distributions of avalanches starting both from the bulk and from the boundaries of the system. Because of their clear geophysical interpretation, two different boundary conditions have been considered (named free and open, respectively). In both cases the bulk distribution is described by the exponent τ3/2\tau \simeq {3/2}. Boundary distributions are instead characterized by two different exponents τ3/2\tau ' \simeq {3/2} and τ7/4\tau ' \simeq {7/4}, for free and open boundary conditions, respectively. These exponents indicate that the mean-field behavior of this model is correctly described by a recently proposed inhomogeneous form of critical branching process.Comment: 6 pages, 2 figures ; to appear on PR

    Order Parameter and Scaling Fields in Self-Organized Criticality

    Full text link
    We present a unified dynamical mean-field theory for stochastic self-organized critical models. We use a single site approximation and we include the details of different models by using effective parameters and constraints. We identify the order parameter and the relevant scaling fields in order to describe the critical behavior in terms of usual concepts of non equilibrium lattice models with steady-states. We point out the inconsistencies of previous mean-field approaches, which lead to different predictions. Numerical simulations confirm the validity of our results beyond mean-field theory.Comment: 4 RevTex pages and 2 postscript figure

    Credit Default Swaps Drawup Networks: Too Tied To Be Stable?

    Get PDF
    We analyse time series of CDS spreads for a set of major US and European institutions on a pe- riod overlapping the recent financial crisis. We extend the existing methodology of {\epsilon}-drawdowns to the one of joint {\epsilon}-drawups, in order to estimate the conditional probabilities of abrupt co-movements among spreads. We correct for randomness and for finite size effects and we find significant prob- ability of joint drawups for certain pairs of CDS. We also find significant probability of trend rein- forcement, i.e. drawups in a given CDS followed by drawups in the same CDS. Finally, we take the matrix of probability of joint drawups as an estimate of the network of financial dependencies among institutions. We then carry out a network analysis that provides insights into the role of systemically important financial institutions.Comment: 15 pages, 5 figures, Supplementary informatio

    Avalanches in Breakdown and Fracture Processes

    Full text link
    We investigate the breakdown of disordered networks under the action of an increasing external---mechanical or electrical---force. We perform a mean-field analysis and estimate scaling exponents for the approach to the instability. By simulating two-dimensional models of electric breakdown and fracture we observe that the breakdown is preceded by avalanche events. The avalanches can be described by scaling laws, and the estimated values of the exponents are consistent with those found in mean-field theory. The breakdown point is characterized by a discontinuity in the macroscopic properties of the material, such as conductivity or elasticity, indicative of a first order transition. The scaling laws suggest an analogy with the behavior expected in spinodal nucleation.Comment: 15 pages, 12 figures, submitted to Phys. Rev. E, corrected typo in authors name, no changes to the pape

    How self-organized criticality works: A unified mean-field picture

    Full text link
    We present a unified mean-field theory, based on the single site approximation to the master-equation, for stochastic self-organized critical models. In particular, we analyze in detail the properties of sandpile and forest-fire (FF) models. In analogy with other non-equilibrium critical phenomena, we identify the order parameter with the density of ``active'' sites and the control parameters with the driving rates. Depending on the values of the control parameters, the system is shown to reach a subcritical (absorbing) or super-critical (active) stationary state. Criticality is analyzed in terms of the singularities of the zero-field susceptibility. In the limit of vanishing control parameters, the stationary state displays scaling characteristic of self-organized criticality (SOC). We show that this limit corresponds to the breakdown of space-time locality in the dynamical rules of the models. We define a complete set of critical exponents, describing the scaling of order parameter, response functions, susceptibility and correlation length in the subcritical and supercritical states. In the subcritical state, the response of the system to small perturbations takes place in avalanches. We analyze their scaling behavior in relation with branching processes. In sandpile models because of conservation laws, a critical exponents subset displays mean-field values (ν=1/2\nu=1/2 and γ=1\gamma = 1) in any dimensions. We treat bulk and boundary dissipation and introduce a new critical exponent relating dissipation and finite size effects. We present numerical simulations that confirm our results. In the case of the forest-fire model, our approach can distinguish between different regimes (SOC-FF and deterministic FF) studied in the literature and determine the full spectrum of critical exponents.Comment: 21 RevTex pages, 3 figures, submitted to Phys. Rev.

    Prevalence of JC Virus in Chinese Patients with Colorectal Cancer

    Get PDF
    BACKGROUND: JCV is a DNA polyomavirus very well adapted to humans. Although JCV DNA has been detected in colorectal cancers (CRC), the association between JCV and CRC remains controversial. In China, the presence of JCV infection in CRC patients has not been reported. Here, we investigated JCV infection and viral DNA load in Chinese CRC patients and to determine whether the JCV DNA in peripheral blood (PB) can be used as a diagnostic marker for JCV-related CRC. METHODOLOGY/PRINCIPAL FINDINGS: Tumor tissues, non-cancerous tumor-adjacent tissues and PB samples were collected from 137 CRC patients. In addition, 80 normal colorectal tissue samples from patients without CRC and PB samples from 100 healthy volunteers were also harvested as controls. JCV DNA was detected by nested PCR and glass slide-based dot blotting. Viral DNA load of positive samples were determined by quantitative real-time PCR. JCV DNA was detected in 40.9% (56/137) of CRC tissues at a viral load of 49.1 to 10.3×10(4) copies/µg DNA. Thirty-four (24.5%) non-cancerous colorectal tissues (192.9 to 4.4×10(3) copies/µg DNA) and 25 (18.2%) PB samples (81.3 to 4.9×10(3) copies/µg DNA) from CRC patients were positive for JCV. Tumor tissues had higher levels of JCV than non-cancerous tissues (P = 0.003) or PB samples (P<0.001). No correlation between the presence of JCV and demographic or medical characteristics was observed. The JCV prevalence in PB samples was significantly associated with the JCV status in tissue samples (P<0.001). Eleven (13.8%) normal colorectal tissues and seven (7.0%) PB samples from healthy donors were positive for JCV. CONCLUSIONS/SIGNIFICANCE: JCV infection is frequently present in colorectal tumor tissues of CRC patients. Although the association between JCV presence in PB samples and JCV status in tissue samples was identified in this study, whether PB JCV detection can serve as a marker for JCV status of CRC requires further study

    JC Virus T-Antigen Regulates Glucose Metabolic Pathways in Brain Tumor Cells

    Get PDF
    Recent studies have reported the detection of the human neurotropic virus, JCV, in a significant population of brain tumors, including medulloblastomas. Accordingly, expression of the JCV early protein, T-antigen, which has transforming activity in cell culture and in transgenic mice, results in the development of a broad range of tumors of neural crest and glial origin. Evidently, the association of T-antigen with a range of tumor-suppressor proteins, including p53 and pRb, and signaling molecules, such as β-catenin and IRS-1, plays a role in the oncogenic function of JCV T-antigen. We demonstrate that T-antigen expression is suppressed by glucose deprivation in medulloblastoma cells and in glioblastoma xenografts that both endogenously express T-antigen. Mechanistic studies indicate that glucose deprivation-mediated suppression of T-antigen is partly influenced by 5′-activated AMP kinase (AMPK), an important sensor of the AMP/ATP ratio in cells. In addition, glucose deprivation-induced cell cycle arrest in the G1 phase is blocked with AMPK inhibition, which also prevents T-antigen downregulation. Furthermore, T-antigen prevents G1 arrest and sustains cells in the G2 phase during glucose deprivation. On a functional level, T-antigen downregulation is partially dependent on reactive oxygen species (ROS) production during glucose deprivation, and T-antigen prevents ROS induction, loss of ATP production, and cytotoxicity induced by glucose deprivation. Additionally, we have found that T-antigen is downregulated by the glycolytic inhibitor, 2-deoxy-D-glucose (2-DG), and the pentose phosphate inhibitors, 6-aminonicotinamide and oxythiamine, and that T-antigen modulates expression of the glycolytic enzyme, hexokinase 2 (HK2), and the pentose phosphate enzyme, transaldolase-1 (TALDO1), indicating a potential link between T-antigen and metabolic regulation. These studies point to the possible involvement of JCV T-antigen in medulloblastoma proliferation and the metabolic phenotype and may enhance our understanding of the role of viral proteins in glycolytic tumor metabolism, thus providing useful targets for the treatment of virus-induced tumors
    corecore