110 research outputs found

    Tackling information asymmetry in networks: a new entropy-based ranking index

    Full text link
    Information is a valuable asset for agents in socio-economic systems, a significant part of the information being entailed into the very network of connections between agents. The different interlinkages patterns that agents establish may, in fact, lead to asymmetries in the knowledge of the network structure; since this entails a different ability of quantifying relevant systemic properties (e.g. the risk of financial contagion in a network of liabilities), agents capable of providing a better estimate of (otherwise) unaccessible network properties, ultimately have a competitive advantage. In this paper, we address for the first time the issue of quantifying the information asymmetry arising from the network topology. To this aim, we define a novel index - InfoRank - intended to measure the quality of the information possessed by each node, computing the Shannon entropy of the ensemble conditioned on the node-specific information. Further, we test the performance of our novel ranking procedure in terms of the reconstruction accuracy of the (unaccessible) network structure and show that it outperforms other popular centrality measures in identifying the "most informative" nodes. Finally, we discuss the socio-economic implications of network information asymmetry.Comment: 12 pages, 8 figure

    Cold and Warm Denaturation of Proteins

    Full text link
    We introduce a simplified protein model where the water degrees of freedom appear explicitly (although in an extremely simplified fashion). Using this model we are able to recover both the warm and the cold protein denaturation within a single framework, while addressing important issues about the structure of model proteins

    Putting Proteins back into Water

    Full text link
    We introduce a simplified protein model where the solvent (water) degrees of freedom appear explicitly (although in an extremely simplified fashion). Using this model we are able to recover the thermodynamic phenomenology of proteins over a wide range of temperatures. In particular we describe both the warm and the {\it cold} protein denaturation within a single framework, while addressing important issues about the structure of model proteins.Comment: 4 Pages, 4 Figures. To appear on PR

    Preferential Exchange: Strengthening Connections in Complex Networks

    Full text link
    Many social, technological and biological interactions involve network relationships whose outcome intimately depends on the structure of the network and on the strengths of the connections. Yet, although much information is now available concerning the structure of many networks, the strengths are more difficult to measure. Here we show that, for one particular social network, notably the e-mail network, a suitable measure of the strength of the connections can be available. We also propose a simple mechanism, based on positive feedback and reciprocity, that can explain the observed behavior and that hints toward specific dynamics of formation and reinforcement of network connections. Network data from contexts different from social sciences indicate that power-law, and generally broad, distributions of the connection strength are ubiquitous, and the proposed mechanism has a wide range of applicability.Comment: 4 pages, 2 .eps figure

    Sex-Oriented stable matchings of the Marriage Problem with correlated and incomplete information

    Full text link
    In the Stable Marriage Problem two sets of agents must be paired according to mutual preferences, which may happen to conflict. We present two generalizations of its sex-oriented version, aiming to take into account correlations between the preferences of agents and costly information. Their effects are investigated both numerically and analytically.Comment: 5 pages, 2 figures, Proceedings of the NATO ARW on Application of Physics in Economic Modelling, Prague 200

    Uncovering the topology of configuration space networks

    Get PDF
    The configuration space network (CSN) of a dynamical system is an effective approach to represent the ensemble of configurations sampled during a simulation and their dynamic connectivity. To elucidate the connection between the CSN topology and the underlying free-energy landscape governing the system dynamics and thermodynamics, an analytical soluti on is provided to explain the heavy tail of the degree distribution, neighbor co nnectivity and clustering coefficient. This derivation allows to understand the universal CSN network topology observed in systems ranging from a simple quadratic well to the native state of the beta3s peptide and a 2D lattice heteropolymer. Moreover CSN are shown to fall in the general class of complex networks describe d by the fitness model.Comment: 6 figure

    Matching games with partial information

    Full text link
    We analyze different ways of pairing agents in a bipartite matching problem, with regard to its scaling properties and to the distribution of individual ``satisfactions''. Then we explore the role of partial information and bounded rationality in a generalized {\it Marriage Problem}, comparing the benefits obtained by self-searching and by a matchmaker. Finally we propose a modified matching game intended to mimic the way consumers' information makes firms to enhance the quality of their products in a competitive market.Comment: 19 pages, 8 fig
    • …
    corecore