44 research outputs found

    Sample Handling Considerations for a Europa Sample Return Mission: An Overview

    Get PDF
    The intent of this abstract is to provide a basic overview of mission requirements for a generic Europan plume sample return mission, based on NASA Curation experience in NASA sample return missions ranging from Apollo to OSIRIS-REx. This should be useful for mission conception and early stage planning. We will break the mission down into Outbound and Return legs and discuss them separately

    Mobile/Modular BSL-4 Facilities for Meeting Restricted Earth Return Containment Requirements

    Get PDF
    NASA robotic sample return missions designated Category V Restricted Earth Return by the NASA Planetary Protection Office require sample containment and biohazard testing in a receiving laboratory as directed by NASA Procedural Requirement (NPR) 8020.12D - ensuring the preservation and protection of Earth and the sample. Currently, NPR 8020.12D classifies Restricted Earth Return for robotic sample return missions from Mars, Europa, and Enceladus with the caveat that future proposed mission locations could be added or restrictions lifted on a case by case basis as scientific knowledge and understanding of biohazards progresses. Since the 1960s, sample containment from an unknown extraterrestrial biohazard have been related to the highest containment standards and protocols known to modern science. Today, Biosafety Level (BSL) 4 standards and protocols are used to study the most dangerous high-risk diseases and unknown biological agents on Earth. Over 30 BSL-4 facilities have been constructed worldwide with 12 residing in the United States; of theses, 8 are operational. In the last two decades, these brick and mortar facilities have cost in the hundreds of millions of dollars dependent on the facility requirements and size. Previous mission concept studies for constructing a NASA sample receiving facility with an integrated BSL-4 quarantine and biohazard testing facility have also been estimated in the hundreds of millions of dollars. As an alternative option, we have recently conducted an initial trade study for constructing a mobile and/or modular sample containment laboratory that would meet all BSL-4 and planetary protection standards and protocols at a faction of the cost. Mobile and modular BSL-2 and 3 facilities have been successfully constructed and deployed world-wide for government testing of pathogens and pharmaceutical production. Our study showed that a modular BSL-4 construction could result in approximately 90% cost reduction when compared to traditional construction methods without compromising the preservation of the sample or Earth

    Genesis Spacecraft Science Canister Preliminary Inspection and Cleaning

    Get PDF
    The Genesis science canister is an aluminum cylinder (75 cm diameter and 35 cm tall) hinged at the mid-line for opening. This canister was cleaned and assembled in an ISO level 4 (Class 10) clean room at Johnson Space Center (JSC) prior to launch. The clean solar collectors were installed and the canister closed in the cleanroom to preserve collector cleanliness. The canister remained closed until opened on station at Earth-Sun L1 for solar wind collection. At the conclusion of collection, the canister was again closed to preserve collector cleanliness during Earth return and re-entry. Upon impacting the dry Utah lakebed at 300 kph the science canister integrity was breached. The canister was returned to JSC. The canister shell was briefly examined, imaged, gently cleaned of dust and packaged for storage in anticipation of future detailed examination. The condition of the science canister shell noted during this brief examination is presented here. The canister interior components were packaged and stored without imaging due to time constraints

    Three Proposed Compendia for Genesis Solar Wind Samples: Science Results, Collector Materials Characterization and Cleaning Techniques

    Get PDF
    Final Paper and not the abstract is attached. Introduction: Planetary material and cosmochemistry research using Genesis solar wind samples (including the development and implementation of cleaning and analytical techniques) has matured sufficiently that compilations on several topics, if made publically accessible, would be beneficial for researchers and reviewers. We propose here three compendia based on content, organization and source of documents (e.g. published peer-reviewed, published, internal memos, archives). For planning purposes, suggestions are solicited from potential users of Genesis solar wind samples for the type of science content and/or organizational style that would be most useful to them. These compendia are proposed as living documents, periodically updated. Similar to the existing compendia described below, the curation compendia are like library or archival finding aids, they are guides to published or archival documents and should not be cited as primary sources

    The Importance of Contamination Knowledge - Insights into Mars Sample Return

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (JSC), in Houston, TX (henceforth Curation Office) manages the curation of all past, present, and future extraterrestrial samples returned by NASA missions and shared collections from international partners, preserving their integrity for future scientific study while providing the samples to the international community in a fair and unbiased way. The Curation Office also curates all reference and witness materials for each mission (e.g., flight and non-flight hardware coupons; lubricants; non-flight, flight-like, and flown witness plates). These reference and witness materials provide the scientific community with the fundamental ability to reconstruct the contamination/alteration history of the sample collection through the course of the mission, with the overall goal of strengthening the scientific conclusions drawn from the study of returned materials. The information gained from characterizing the physical, biological, inorganic, and organic chemical properties of reference and witness materials is defined as the Contamination Knowledge (CK) of the sample collection. Unlike the data collected for Contamination Control (CC) and Planetary Protection (PP), CK is exclusively concerned with preserving reference and witness materials for study by future scientists upon sample return. Although CC and PP data collected for sample integrity and forward contamination purposes can be complementary to CK, they are two separate data sets with distinct objectives. A robust collection of samples for CK is necessary to allow the extraterrestrial material in a returned sample to be distinguished from terrestrial contamination. Traditionally CK is utilized by sample scientists in order to accomplish the missions scientific objectives, however this information can also be utilized by the Office of Planetary Protection to help evaluate the presence of any back contamination. Mars 2020, the first phase of a potential multipart Mars Sample Return (MSR) campaign, is expected to contribute to NASAs Mars Exploration Program Science Goals by filling in knowledge gaps concerning: 1) the existence of past or present life on Mars, 2) the past and present climate of Mars, 3) the geology of Mars, and 4) hazards associated with human exploration of Mars. Although there is debate concerning which samples will best answer these questions, the necessity for proper sample blanks is well-understood. The CC and PP requirements, driven by the restricted Class V mission designation, are the most stringent of any sample return mission in recent history. The extremely low levels of allowable terrestrial contamination on the spacecraft and rover can complicate these analyses given the detection limits of current analytical instrumentation, especially in the case of biological contamination. By collecting and curating unanalyzed samples specifically for CK, future sample scientists will not be relegated to: 1) relying on data collected using possibly obsolete tools and techniques for return sample blanks, or 2) using remnants of extracted and/or cultured samples from ATLO (Assembly, Test, and Launch Operations), which could be incompatible with the desired experimental endpoints or state-of-the-art techniques available at the time of sample return.The addition of biological experimental endpoints to a sample return campaigns objectives broadens the requisite range in preservation environments (e.g. inert ultra-pure nitrogen gaseous environment at 18 degrees Centigrade versus less than or equal to minus 80 degrees Centigrade) and types of CK samples. As a result, the Curation Office will also curate the following CK samples at less than or equal to minus 80 degrees Centigrade for the Mars 2020 mission: 1) unanalyzed swabs and wipes in sterile containers, 2) all recirculation filters from the clean rooms used for sample and caching subsystem assembly and all filters from the laminar flow benches used to assemble sample intimate hardware, and 3) witness plates collecting airborne contamination within the assembly clean rooms. It has been Curation Office policy since the Apollo missions to preserve as many pristine samples as possible for future scientific research. Although CK is required to be collected for all stages of the MSR campaign, the CK for the Mars 2020 mission is the most critical for understanding contamination in the returned samples given the intimacy between the Martian samples and the Mars 2020 flight hardware. This presentation highlights the importance of CK for sample return missions as well as the traditional and novel types of CK samples required for a successful MSR campaign

    Perserving Samples and Their Scientific Integrity - Insights into MSR from the Astromaterials Acquisition and Curation Office at NASA Johnson Space Center

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (JSC), in Houston, TX (henceforth Curation Office) manages the curation of all past, present, and future extraterrestrial samples returned by NASA missions and shared collections from international partners, preserving their integrity for future scientific study while providing the samples to the international community in a fair and unbiased way. The Curation Office also curates flight and non-flight reference materials and other materials from spacecraft assembly of sample return missions that would have the potential to cross-contaminate a present or future NASA astromaterials collection. These materials are primarily collected during the assembly, test, and launch operations (ATLO) phase and after flight during the recovery and curation phase. In addition, the Curation Office curates non-flight, flight-like, and flown witness plates for sample return missions. These reference materials and witness plates provide the scientific community with the fundamental ability to reconstruct the contamination/alteration history of the sample collection through the course of the mission, with the overall goal of strengthening the scientific conclusions drawn from the study of returned materials

    The Importance of Contamination Knowledge in Curation - Insights into Mars Sample Return

    Get PDF
    The Astromaterials Acquisition and Curation Office at NASA Johnson Space Center (JSC), in Houston, TX (henceforth Curation Office) manages the curation of extraterrestrial samples returned by NASA missions and shared collections from international partners, preserving their integrity for future scientific study while providing the samples to the international community in a fair and unbiased way. The Curation Office also curates flight and non-flight reference materials and other materials from spacecraft assembly (e.g., lubricants, paints and gases) of sample return missions that would have the potential to cross-contaminate a present or future NASA astromaterials collection

    Robotic Sample Manipulator for Handling Astromaterials Inside the Geolab Microgravity Glovebox

    Get PDF
    Future human and robotic sample return missions will require isolation containment systems with strict protocols and procedures for reducing inorganic and organic contamination. Robotic handling and manipulation of astromaterials may be required for preliminary examination inside such an isolation containment system. In addition, examination of astromaterials in microgravity will require constant contact to secure samples during manipulation. The National Space Grant Foundation exploration habitat (XHab) academic innovative challenge 2012 administered through the NASA advanced exploration systems (AES) deep space habitat (DSH) project awarded funding to the University of Bridgeport team to develop an engineering design for tools to facilitate holding and handling geological samples for analysis in a microgravity glovebox environment. The Bridgeport XHab team developed a robotic arm system with a three-finger gripper that could manipulate geologic samples within the existing GeoLab glovebox integrated into NASA's DSH called the GeoLab Robotic Sample Manipulator (see fig. 1 and 2). This hardware was deployed and tested during the 2012 DSH mission operations tests [1]

    Comparing oncologic outcomes in patients undergoing surgery for oncocytic neoplasms, conventional oncocytoma, and chromophobe renal cell carcinoma

    Get PDF
    Introduction Oncocytic neoplasms are renal tumors similar to oncocytoma, but their morphologic variations preclude definitive diagnosis. This somewhat confusing diagnosis can create treatment and surveillance challenges for the treating urologist. We hypothesize that these subtle morphologic variations do not drastically affect the malignant potential of these tumors, and we sought to demonstrate this by comparing clinical outcomes of oncocytic neoplasms to those of classic oncocytoma and chromophobe. Methods We gathered demographic and outcomes data for patients with variant oncocytic tumors. Oncologic surveillance was conducted per institutional protocol in accordance with NCCN guidelines. Descriptive statistics were used to compare incidence of metastasis and death against those for patients with oncocytoma and chromophobe. Three hundred and fifty-one patients were analyzed: 164 patients with oncocytoma, 28 with oncocytic neoplasms, and 159 with chromophobe tumors. Results Median follow-up time for the entire cohort was 32.4 months, (interquartile range 9.2–70.0). Seventeen total patients (17/351, 4.9%) died during the course of the study. In patients with oncocytoma or oncocytic neoplasm, none were known to metastasize or die of their disease. Only chromophobe tumors >6 cm in size in our series demonstrated metastatic progression and approximately half of these metastasized tumors demonstrated sarcomatoid changes. Conclusion Variant oncocytic neoplasms appear to have a natural course similar to classic oncocytoma. These tumors appear to have no metastatic potential, and oncologic surveillance may not be indicated after surgery
    corecore