29 research outputs found

    The Impact of Occupancy Energy Use Behaviour of High-Rise Dwellings In Southeast China

    Get PDF
    \ua9 2021 CUE. Reducing building energy use and the associated greenhouse gas emissions is becoming increasingly important. Since occupants’ behaviour has significant impacts on building energy performance and occupant comfort, and it varies with an individual’s age, sex, background, and other personal factors, it is important to understand the critical links between people’s lifestyles and energy consumption. Most studies of the relationship between occupancy behaviour and energy consumption focus on public buildings like office buildings and commercial buildings. Research for dwellings is limited since the information is difficult to collect, and detailed knowledge of individual homes is needed. This paper conducted a detailed survey to gain information on thermal satisfaction levels, occupancy equipment ownership and their using patterns of 112 urban households who lived in a typical booming city in southeast China. Based on the collected data, an energy simulation software program was used to investigate the main factors of occupancy behaviour, which affect energy consumption. The results lead to the internal gains profiles and window-opening profiles, which reflect the lifestyle in the target area who lived in an urban highrise building. The simulation of typical households indicated that occupancy behaviour only occupied a small scale compared to equipment but still significant to improve

    Analysis of a rotary passive heat recovery device for natural ventilation windcatcher

    Get PDF
    Based on the design of traditional architecture, windcatchers are devices which provides passive ventilation by manipulating pressure differentials around buildings induced by the movement of wind and difference in temperature. In temperature climates, it is effective in providing passive cooling during summer months. However, during winter months, the low air temperature supplied to the space can cause further thermal discomfort and increase heat loss which lead to higher energy consumption. This limits the capabilities of windcatchers to provide ventilation all year round. To address this issue, the present study proposes incorporating a rotary thermal heat recovery device into the windcatcher channel and investigate its performance using numerical modelling and experimental tests. The study focused on characterizing the design and performance of the copper radial blades of the proposed heat recovery device. The predicted results of the airflow and temperature showed good agreement with the experimental tests. Two types of radial blade designs were assessed in terms of the airflow velocity and distribution, the pressure drop and the heat recovery performance

    Indoor environmental quality (IEQ) analysis of a low energy wind catcher with horizontally-arranged heat transfer devices

    Get PDF
    Windcatchers are natural ventilation systems based on the design of traditional architecture, intended to provide ventilation by manipulating pressure differentials around buildings induced by wind movement and temperature difference. Though the movement of air caused by the wind catcher will lead to a cooling sensation for occupants, the high air temperature in hot climates will result in little cooling or thermal discomfort to occupants. In order to improve the cooling performance by wind catchers, heat transfer devices were incorporated into the design. This work will investigate the indoor environment quality performance of a roof-mounted cooling windcatcher integrated with horizontally-arranged heat transfer devices (HHTD) using Computational Fluid Dynamics (CFD) and field test analysis. The windcatcher model was incorporated to a 5mx5mx3m test room model. The study employed the CFD code FLUENT with the standard k- model to conduct the steady-state RANS simulation. For the indoor CO2 concentration analysis, a simplified exhalation model was used and the room was filled with 12 occupants. The CO2 concentration analysis showed that the system was capable of delivering fresh air inside the space and lowering the CO2 levels. Thermal comfort analysis using the Predicted Mean Vote (PMV) was conducted whereby the measurements ranged from slightly-cool (-0.96) to slightly warm range (0.36 to 0.60). Field test measurements were carried out in the Ras-Al-Khaimah (RAK), UAE during the month of September. Numerical model was validated using experimental data and good agreement was observed between both methods of analysis

    A numerical and experimental analysis of an integrated TEG-PCM power enhancement system for photovoltaic cells

    Get PDF
    Solar photovoltaic (PV) cells especially crystal silicon cells have witnessed a soaring installed capacity during past years. Research efforts have been made to increase the PV conversion efficiency and one direction is towards the cooling of PV systems since a higher PV temperature impairs its conversion efficiency. Phase change materials (PCM) capable of storing large amounts of latent heat are found to be effective on cooling PV cells while thermoelectric generators (TEG) which are solid waste heat converters can be used for converting the heat from PV into electricity. Therefore, this research investigates the concept of an integrated thermoelectric PCM system to enhance the PV efficiency. Theoretical investigations found that the TEGs had small power output due to small temperature difference under natural convection conditions. However, PCM was effective on hampering PV temperature increase during heat storage process. This research developed a numerical model for thermal simulations of the integrated system and has been validated by experimental results. The effect of various PCM thicknesses, conductivities and phase change temperatures were evaluated. The simulation results stressed the importance of high PCM conductivity for a thick PCM layer to reduce its insulation effect on the TEG and PV layers. Finally, the best thermal performance for the PV/TEG/PCM system was achieved with a 50 mm thick PCM layer with thermal conductivity of 5 W/m K and a phase change temperature of 40–45 °C. Further optimisation and experimental evaluation are however being recommended towards the establishment of the full technical and scientific boundaries

    Energy efficiency and comfort in the workplace: Norwegian cellular and British open plan workplaces

    Get PDF
    Two office layouts with high and low levels of thermal control were compared, respectively Norwegian cellular and British open plan offices. The Norwegian practice provided every user with control over a window, blinds, door, and the ability to adjust heating and cooling. Occupants were expected to control their thermal environment to find their own comfort, while air conditioning was operating in the background to ensure the indoor air quality. In contrast, in the British office, limited thermal control was provided through openable windows and blinds only for occupants seated around the perimeter of the building. Centrally operated displacement ventilation was the main thermal control system. Users’ perception of thermal environment was recorded through survey questionnaires, empirical building performance through environmental measurements and thermal control through semi-structured interviews. The Norwegian office had 35% higher user satisfaction and 20% higher user comfort compared to the British open plan office. However, the energy consumption in the British practice was within the benchmark and much lower than the Norwegian office. Overall, a balance between thermal comfort and energy efficiency is required, as either extreme poses difficulties for the other

    Analysis of a rotary passive heat recovery device for natural ventilation windcatcher

    Get PDF
    Based on the design of traditional architecture, windcatchers are devices which provides passive ventilation by manipulating pressure differentials around buildings induced by the movement of wind and difference in temperature. In temperature climates, it is effective in providing passive cooling during summer months. However, during winter months, the low air temperature supplied to the space can cause further thermal discomfort and increase heat loss which lead to higher energy consumption. This limits the capabilities of windcatchers to provide ventilation all year round. To address this issue, the present study proposes incorporating a rotary thermal heat recovery device into the windcatcher channel and investigate its performance using numerical modelling and experimental tests. The study focused on characterizing the design and performance of the copper radial blades of the proposed heat recovery device. The predicted results of the airflow and temperature showed good agreement with the experimental tests. Two types of radial blade designs were assessed in terms of the airflow velocity and distribution, the pressure drop and the heat recovery performance

    Building-Related Symptoms, Energy, and Thermal Control in the Workplace: Personal and Open Plan Offices

    Get PDF
    This study compared building-related symptoms in personal and open plan offices, where high and low levels of control over the thermal environment were provided, respectively. The individualized approach in Norway provided every user with a personal office, where they had control over an openable window, door, blinds, and thermostat. In contrast, the open plan case studies in the United Kingdom provided control over openable windows and blinds only for limited occupants seated around the perimeter of the building, with users seated away from the windows having no means of environmental control. Air conditioning was deployed in the Norwegian case study buildings, while displacement ventilation and natural ventilation were utilized in the British examples. Field studies of thermal comfort were applied with questionnaires, environmental measurements, and interviews. Users’ health was better in the Norwegian model (28%), while the British model was much more energy efficient (up to 10 times). The follow-up interviews confirmed the effect of lack of thermal control on users’ health. A balanced appraisal was made of energy performance and users’ health between the two buildings

    Analysis of the thermal comfort and energy performance of a thermal chair for open plan office

    Get PDF
    The aim of this work is to analyse the thermal comfort and energy performance of a thermal heating chair for open plan office using field experiments, thermal comfort survey and energy simulations. A comprehensive review on the development of thermal chairs was carried out to highlight the present research gaps. The study developed a thermal chair prototype with controllable heating pads, incorporated into the back of the seat and back rest fabric. The field test was carried out in an office building in the UK during the winter. The study showed that the users set the thermal chair temperature between 29-45 °C. The field survey results of the thermal satisfaction survey showed that 19 out of 44 participants felt satisfied before using the device. While after using the thermal chair, the number of satisfied respondents increased to 34. The work also utilised Building Energy Simulation to further assess the thermal comfort and energy performance of the thermal chair. Three cases were simulated: non heated office chair with the zone thermostat maintained at 22 °C, non heated office chair with the zone thermostat at 16-20 °C and thermal chair with the zone thermostat at 16-20 °C

    Improving thermal and electrical efficiency in photovoltaic thermal systems for sustainable cooling system integration

    Get PDF
    Research into photovoltaic thermal systems is important in solar technologies as photovoltaic thermal systems are designed to produce both electrical and thermal energy, this can lead to improved performance of the overall system. The performance of photovoltaic thermal systems is based on several factors that include photovoltaic thermal materials, design, ambient temperature, inlet and outlet fluid temperature and photovoltaic cell temperature. The aim of this study is to investigate the effect of photovoltaic thermal outlet water temperatures and solar cell temperature on both electrical and thermal efficiency for different range of inlet water temperature. To achieve this, a mathematical model of a photovoltaic thermal system was developed to calculate the anticipated system performance. The factors that affect the efficiency of photovoltaic thermal collectors were discussed and the outlet fluid temperature from the photovoltaic thermal is investigated in order to reach the highest overall efficiency for the solar cooling system. An average thermal and electrical efficiency of 65% and 13.7%, respectively, was achieved and the photovoltaic thermal mathematical model was validated with experimental data from literature
    corecore