942 research outputs found

    Toward an architecture for quantum programming

    Full text link
    It is becoming increasingly clear that, if a useful device for quantum computation will ever be built, it will be embodied by a classical computing machine with control over a truly quantum subsystem, this apparatus performing a mixture of classical and quantum computation. This paper investigates a possible approach to the problem of programming such machines: a template high level quantum language is presented which complements a generic general purpose classical language with a set of quantum primitives. The underlying scheme involves a run-time environment which calculates the byte-code for the quantum operations and pipes it to a quantum device controller or to a simulator. This language can compactly express existing quantum algorithms and reduce them to sequences of elementary operations; it also easily lends itself to automatic, hardware independent, circuit simplification. A publicly available preliminary implementation of the proposed ideas has been realized using the C++ language.Comment: 23 pages, 5 figures, A4paper. Final version accepted by EJPD ("swap" replaced by "invert" for Qops). Preliminary implementation available at: http://sra.itc.it/people/serafini/quantum-computing/qlang.htm

    Quantum Game of Life

    Full text link
    We introduce a quantum version of the Game of Life and we use it to study the emergence of complexity in a quantum world. We show that the quantum evolution displays signatures of complex behaviour similar to the classical one, however a regime exists, where the quantum Game of Life creates more complexity, in terms of diversity, with respect to the corresponding classical reversible one

    Spin state readout by quantum jump technique: for the purpose of quantum computing

    Full text link
    Utilizing the Pauli-blocking mechanism we show that shining circular polarized light on a singly-charged quantum dot induces spin dependent fluorescence. Employing the quantum-jump technique we demonstrate that this resonance luminescence, due to a spin dependent optical excitation, serves as an excellent readout mechanism for measuring the spin state of a single electron confined to a quantum dot.Comment: 11 pages, 4 eps figure

    Wigner crystals of ions as quantum hard drives

    Full text link
    Atomic systems in regular lattices are intriguing systems for implementing ideas in quantum simulation and information processing. Focusing on laser cooled ions forming Wigner crystals in Penning traps, we find a robust and simple approach to engineering non-trivial 2-body interactions sufficient for universal quantum computation. We then consider extensions of our approach to the fast generation of large cluster states, and a non-local architecture using an asymmetric entanglement generation procedure between a Penning trap system and well-established linear Paul trap designs.Comment: 5 pages, 4 figure

    Spin-based optical quantum gates via Pauli blocking in semiconductor quantum dots

    Full text link
    We present a solid-state implementation of ultrafast conditional quantum gates. Our proposal for a quantum-computing device is based on the spin degrees of freedom of electrons confined in semiconductor quantum dots, thus benefiting from relatively long decoherence times. More specifically, combining Pauli blocking effects with properly tailored ultrafast laser pulses, we are able to obtain sub-picosecond spin-dependent switching of the Coulomb interaction, which is the essence of our conditional phase-gate proposal. This allows us to realize {\it a fast two qubit gate which does not translate into fast decoherence times} and paves the road for an all-optical spin-based quantum computer.Comment: 14 Pages RevTeX, 3 eps figures include

    Ion induced density bubble in a strongly correlated one dimensional gas

    Get PDF
    We consider a harmonically trapped Tonks-Girardeau gas of impenetrable bosons in the presence of a single embedded ion, which is assumed to be tightly confined in a RF trap. In an ultracold ion-atom collision the ion's charge induces an electric dipole moment in the atoms which leads to an attractive r−4r^{-4} potential asymptotically. We treat the ion as a static deformation of the harmonic trap potential and model its short range interaction with the gas in the framework of quantum defect theory. The molecular bound states of the ionic potential are not populated due to the lack of any possible relaxation process in the Tonks-Girardeau regime. Armed with this knowledge we calculate the density profile of the gas in the presence of a central ionic impurity and show that a density \textit{bubble} of the order of a micron occurs around the ion for typical experimental parameters. From these exact results we show that an ionic impurity in a Tonks gas can be described using a pseudopotential, allowing for significantly easier treatment.Comment: Accepted for publication in Physical Review A (Rapid Communications)
    • …
    corecore