47 research outputs found

    An overview of harms associated with β-lactam antimicrobials: where do the carbapenems fit in?

    Get PDF
    The US Institute of Medicine's focus on patient safety has motivated hospital administrators to facilitate a culture of safety. As a result, subcommittees of the pharmacy and therapeutics committee have emerged in many hospitals to focus on adverse events and patient safety. Antimicrobial harms have gained the attention of practicing clinicians and hospital formulary committees, because they top the list of drugs that are associated with adverse events and because of certain serious harms that have ultimately led to the withdrawal of some antimicrobial agents. In the near future, several antimicrobials in the late phase of development will become available for clinical use (ceftobiprole, ceftaroline, and telavancin), and others (doripenem and dalbavancin) have recently joined the armamentarium. Because new antimicrobials will become part of the treatment armamentarium, it is important to discuss our current understanding of antimicrobial harms in general. Although not thought of as traditional adverse events, Clostridium difficile infection and development of resistance during therapy are adverse events that occur as a result of antimicrobial exposure and therefore are discussed. In addition, a distillation of our current understanding of β-lactam specific adverse events will be provided. Finally, new methods of administration are being evaluated that may influence peak concentration-related antimicrobial adverse events

    Evaluation of the performance of Dutch Lipid Clinic Network score in an Italian FH population: The LIPIGEN study

    Get PDF
    Background and aims: Familial hypercholesterolemia (FH) is an inherited disorder characterized by high levels of blood cholesterol from birth and premature coronary heart disease. Thus, the identification of FH patients is crucial to prevent or delay the onset of cardiovascular events, and the availability of a tool helping with the diagnosis in the setting of general medicine is essential to improve FH patient identification.Methods: This study evaluated the performance of the Dutch Lipid Clinic Network (DLCN) score in FH patients enrolled in the LIPIGEN study, an Italian integrated network aimed at improving the identification of patients with genetic dyslipidaemias, including FH.Results: The DLCN score was applied on a sample of 1377 adults (mean age 42.9 +/- 14.2 years) with genetic diagnosis of FH, resulting in 28.5% of the sample classified as probable FH and 37.9% as classified definite FH. Among these subjects, 43.4% had at least one missing data out of 8, and about 10.0% had 4 missing data or more. When analyzed based on the type of missing data, a higher percentage of subjects with at least 1 missing data in the clinical history or physical examination was classified as possible FH (DLCN score 3-5). We also found that using real or estimated pre-treatment LDL-C levels may significantly modify the DLCN score.Conclusions: Although the DLCN score is a useful tool for physicians in the diagnosis of FH, it may be limited by the complexity to retrieve all the essential information, suggesting a crucial role of the clinical judgement in the identification of FH subjects

    Familial hypercholesterolaemia in children and adolescents from 48 countries: a cross-sectional study

    Get PDF
    Background Approximately 450 000 children are born with familial hypercholesterolaemia worldwide every year, yet only 2·1% of adults with familial hypercholesterolaemia were diagnosed before age 18 years via current diagnostic approaches, which are derived from observations in adults. We aimed to characterise children and adolescents with heterozygous familial hypercholesterolaemia (HeFH) and understand current approaches to the identification and management of familial hypercholesterolaemia to inform future public health strategies. Methods For this cross-sectional study, we assessed children and adolescents younger than 18 years with a clinical or genetic diagnosis of HeFH at the time of entry into the Familial Hypercholesterolaemia Studies Collaboration (FHSC) registry between Oct 1, 2015, and Jan 31, 2021. Data in the registry were collected from 55 regional or national registries in 48 countries. Diagnoses relying on self-reported history of familial hypercholesterolaemia and suspected secondary hypercholesterolaemia were excluded from the registry; people with untreated LDL cholesterol (LDL-C) of at least 13·0 mmol/L were excluded from this study. Data were assessed overall and by WHO region, World Bank country income status, age, diagnostic criteria, and index-case status. The main outcome of this study was to assess current identification and management of children and adolescents with familial hypercholesterolaemia. Findings Of 63 093 individuals in the FHSC registry, 11 848 (18·8%) were children or adolescents younger than 18 years with HeFH and were included in this study; 5756 (50·2%) of 11 476 included individuals were female and 5720 (49·8%) were male. Sex data were missing for 372 (3·1%) of 11 848 individuals. Median age at registry entry was 9·6 years (IQR 5·8–13·2). 10 099 (89·9%) of 11 235 included individuals had a final genetically confirmed diagnosis of familial hypercholesterolaemia and 1136 (10·1%) had a clinical diagnosis. Genetically confirmed diagnosis data or clinical diagnosis data were missing for 613 (5·2%) of 11 848 individuals. Genetic diagnosis was more common in children and adolescents from high-income countries (9427 [92·4%] of 10 202) than in children and adolescents from non-high-income countries (199 [48·0%] of 415). 3414 (31·6%) of 10 804 children or adolescents were index cases. Familial-hypercholesterolaemia-related physical signs, cardiovascular risk factors, and cardiovascular disease were uncommon, but were more common in non-high-income countries. 7557 (72·4%) of 10 428 included children or adolescents were not taking lipid-lowering medication (LLM) and had a median LDL-C of 5·00 mmol/L (IQR 4·05–6·08). Compared with genetic diagnosis, the use of unadapted clinical criteria intended for use in adults and reliant on more extreme phenotypes could result in 50–75% of children and adolescents with familial hypercholesterolaemia not being identified. Interpretation Clinical characteristics observed in adults with familial hypercholesterolaemia are uncommon in children and adolescents with familial hypercholesterolaemia, hence detection in this age group relies on measurement of LDL-C and genetic confirmation. Where genetic testing is unavailable, increased availability and use of LDL-C measurements in the first few years of life could help reduce the current gap between prevalence and detection, enabling increased use of combination LLM to reach recommended LDL-C targets early in life. Funding Pfizer, Amgen, Merck Sharp & Dohme, Sanofi–Aventis, Daiichi Sankyo, and Regeneron

    Recurrent mutations of the apolipoprotein A-I gene in three kindreds with severe HDL deficiency

    No full text
    Two siblings with high density lipoprotein (HDL) deficiency and no plasma apolipoprotein A-I (Apo A-I) were found to be homozygous for a cytosine deletion in exon 3 of Apo A-I gene (c.85 del C, Q5FsX11). This mutation causes a frameshift leading to a premature stop codon and abolishes the synthesis of Apo A-I. Although both siblings had corneal opacifications and planar xanthomas, only one of them had premature coronary artery disease, probably as the result of mildly elevated LDL levels. In two other unrelated subjects HDL deficiency was due to heterozygosity for a nucleotide substitution in exon 4 of Apo A-I gene (c.494 T>G, L141R). Both Apo A-I mutations were reported previously in an Italian kindred which included compound heterozygotes and simple heterozygotes. We investigated all carriers of these mutations in the three kindreds and in the one previously reported. Plasma Apo A-I and HDL-C levels were lower in the mutation carriers than in non-carrier family members. These levels, however, were lower in L141R carriers than in carriers of c.85 del C. Haplotype analysis performed using several polymorphisms suggested that both the c.85 del C and L141R are likely to be recurrent mutations
    corecore