305 research outputs found

    On a new theoretical calibration of the Stroemgren hk metallicity index: NGC6522 as a first test case

    Full text link
    We present a new theoretical calibration of the Stroemgren metallicity index hk by using alpha-enhanced evolutionary models transformed into the observational plane by using atmosphere models with the same chemical mixture. We apply the new Metallicity--Index--Color (MIC) relations to a sample of 85 field red giants (RGs) and find that the difference between photometric estimates and spectroscopic measurements is on average smaller than 0.1 dex with a dispersion of sigma = 0.19 dex. The outcome is the same if we apply the MIC relations to a sample of eight RGs in the bulge globular cluster NGC6522, but the standard deviation ranges from 0.26 (hk, v-y) to 0.49 (hk, u-y). The difference is mainly caused by a difference in photometric accuracy. The new MIC relations based on the (Ca-y) color provide metallicities systematically more metal-rich than the spectroscopic ones. We found that the Ca-band is affected by Ca abundance and possibly by chromospheric activity.Comment: Accepted for publication on The Astrophysical Journal Letter

    Hiding its age: the case for a younger bulge

    Full text link
    The determination of the age of the bulge has led to two contradictory results. On the one side, the color-magnitude diagrams in different bulge fields seem to indicate a uniformly old (>>10 Gyr) population. On the other side, individual ages derived from dwarfs observed through microlensing events seem to indicate a large spread, from ∼\sim 2 to ∼\sim 13 Gyr. Because the bulge is now recognised as being mainly a boxy peanut-shaped bar, it is suggested that disk stars are one of its main constituents, and therefore also stars with ages significantly younger than 10 Gyr. Other arguments as well point to the fact that the bulge cannot be exclusively old, and in particular cannot be a burst population, as it is usually expected if the bulge was the fossil remnant of a merger phase in the early Galaxy. In the present study, we show that given the range of metallicities observed in the bulge, a uniformly old population would be reflected into a significant spread in color at the turn-off which is not observed. Inversely, we demonstrate that the correlation between age and metallicity expected to hold for the inner disk would conspire to form a color-magnitude diagram with a remarkably small spread in color, thus mimicking the color-magnitude diagram of a uniformly old population. If stars younger than 10 Gyr are part of the bulge, as must be the case if the bulge has been mainly formed through dynamical instabilities in the disk, then a very small spread at the turn-off is expected, as seen in the observations.Comment: 11 pages, 11 figures. Accepted for publication in A&

    Detailed abundances of Red Giants in the Globular Cluster NGC~1851: C+N+O and the Origin of Multiple Populations

    Full text link
    We present chemical abundance analysis of a sample of 15 red giant branch (RGB) stars of the Globular Cluster NGC~1851 distributed along the two RGBs of the (v, v-y) CMD. We determined abundances for C+N+O, Na, α\alpha, iron-peak, and s-elements. We found that the two RGB populations significantly differ in their light (N,O,Na) and s-element content. On the other hand, they do not show any significant difference in their α\alpha and iron-peak element content. More importantly, the two RGB populations do not show any significant difference in their total C+N+O content. Our results do not support previous hypotheses suggesting that the origin of the two RGBs and the two subgiant branches of the cluster is related to a different content of either α\alpha (including Ca) or iron-peak elements, or C+N+O abundance, due to a second generation polluted by SNeII.Comment: 9 pages, 4 figures, accepted for publication on ApJ Lette

    The Hottest Horizontal-Branch Stars in omega Centauri - Late Hot Flasher vs. Helium Enrichment

    Full text link
    UV observations of some massive globular clusters uncovered a significant population of very hot stars below the hot end of the horizontal branch (HB), the so-called blue hook stars. This feature might be explained either as results of the late hot flasher scenario where stars experience the helium flash while on the white dwarf cooling curve or by the progeny of the helium-enriched sub-population recently postulated to exist in some clusters. Moderately high resolution spectra of stars at the hot end of the blue HB in omega Cen were analysed for atmospheric parameters and abundances using LTE and Non-LTE model atmospheres. In the temperature range 30,000K to 50,000K we find that 35% of our stars are helium-poor (log(n_He/n_H) < -2), 51% have solar helium abundance within a factor of 3 (-1.5 <= log(n_He/n_H) <= -0.5) and 14% are helium-rich (log(n_He/n_H)> -0.4). We also find carbon enrichment in step with helium enrichment, with a maximum carbon enrichment of 3% by mass. At least 14% of the hottest HB stars in omega Cen show helium abundances well above the highest predictions from the helium enrichment scenario (Y = 0.42 corresponding to log(n_He/n_H) ~ -0.74). In addition, the most helium-rich stars show strong carbon enrichment as predicted by the late hot flasher scenario. We conclude that the helium-rich HB stars in omega Cen cannot be explained solely by the helium-enrichment scenario invoked to explain the blue main sequence. (Abridged)Comment: 4 pages, 3 figures, uses aa.cls (enclosed), accepted as A&A Lette

    Just how hot are the ω\omega Centauri extreme horizontal branch pulsators?

    Full text link
    Past studies based on optical spectroscopy suggest that the five ω\omega Cen pulsators form a rather homogeneous group of hydrogen-rich subdwarf O stars with effective temperatures of around 50 000 K. This places the stars below the red edge of the theoretical instability strip in the log gg −- Teff diagram, where no pulsation modes are predicted to be excited. Our goal is to determine whether this temperature discrepancy is real, or whether the stars' effective temperatures were simply underestimated. We present a spectral analysis of two rapidly pulsating extreme horizontal branch (EHB) stars found in ω\omega Cen. We obtained Hubble Space Telescope/COS UV spectra of two ω\omega Cen pulsators, V1 and V5, and used the ionisation equilibrium of UV metallic lines to better constrain their effective temperatures. As a by-product we also obtained FUV lightcurves of the two pulsators. Using the relative strength of the N IV and N V lines as a temperature indicator yields Teff values close to 60 000 K, significantly hotter than the temperatures previously derived. From the FUV light curves we were able to confirm the main pulsation periods known from optical data. With the UV spectra indicating higher effective temperatures than previously assumed, the sdO stars would now be found within the predicted instability strip. Such higher temperatures also provide consistent spectroscopic masses for both the cool and hot EHB stars of our previously studied sample.Comment: 9 pages, accepted for publication in Astronomy and Astrophysic
    • …
    corecore