16,393 research outputs found

    The role of initial conditions in the ageing of the long-range spherical model

    Full text link
    The kinetics of the long-range spherical model evolving from various initial states is studied. In particular, the large-time auto-correlation and -response functions are obtained, for classes of long-range correlated initial states, and for magnetized initial states. The ageing exponents can depend on certain qualitative features of initial states. We explicitly find the conditions for the system to cross over from ageing classes that depend on initial conditions to those that do not.Comment: 15 pages; corrected some typo

    E-ELT constraints on runaway dilaton scenarios

    Get PDF
    We use a combination of simulated cosmological probes and astrophysical tests of the stability of the fine-structure constant α\alpha, as expected from the forthcoming European Extremely Large Telescope (E-ELT), to constrain the class of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We consider three different scenarios for the dark sector couplings in the model and discuss the observational differences between them. We improve previously existing analyses investigating in detail the degeneracies between the parameters ruling the coupling of the dilaton field to the other components of the universe, and studying how the constraints on these parameters change for different fiducial cosmologies. We find that if the couplings are small (e.g., αb=αV0\alpha_b=\alpha_V\sim0) these degeneracies strongly affect the constraining power of future data, while if they are sufficiently large (e.g., αb105αV0.05\alpha_b\gtrsim10^{-5}-\alpha_V\gtrsim0.05, as in agreement with current constraints) the degeneracies can be partially broken. We show that E-ELT will be able to probe some of this additional parameter space.Comment: 16 pages, 8 figures. Updated version matching the one accepted by JCA

    La vida humana entre la perfección y la caída según san Agustín

    Get PDF
    In this analysis of St. Augustine’s concept of natural law, the focus will be on the way he presents, in a continuous development, the ideas of moral compulsion and personal growth. In Augustine’s interpretation of the biblical text, the foundations of natural law are provided, such that morality is not simply the fruit of consensus. Man is seen not only as a product of history, even though he cannot be understood outside of it. The natural order and the supernatural order are this way tied together

    Entanglement entropy of two disjoint intervals in c=1 theories

    Full text link
    We study the scaling of the Renyi entanglement entropy of two disjoint blocks of critical lattice models described by conformal field theories with central charge c=1. We provide the analytic conformal field theory result for the second order Renyi entropy for a free boson compactified on an orbifold describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual line. We have checked this prediction in cluster Monte Carlo simulations of the classical two dimensional AT model. We have also performed extensive numerical simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor network techniques that allowed to obtain the reduced density matrices of disjoint blocks of the spin-chain and to check the correctness of the predictions for Renyi and entanglement entropies from conformal field theory. In order to match these predictions, we have extrapolated the numerical results by properly taking into account the corrections induced by the finite length of the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure

    The One-dimensional KPZ Equation and the Airy Process

    Full text link
    Our previous work on the one-dimensional KPZ equation with sharp wedge initial data is extended to the case of the joint height statistics at n spatial points for some common fixed time. Assuming a particular factorization, we compute an n-point generating function and write it in terms of a Fredholm determinant. For long times the generating function converges to a limit, which is established to be equivalent to the standard expression of the n-point distribution of the Airy process.Comment: 15 page

    Critical Langevin dynamics of the O(N)-Ginzburg-Landau model with correlated noise

    Full text link
    We use the perturbative renormalization group to study classical stochastic processes with memory. We focus on the generalized Langevin dynamics of the \phi^4 Ginzburg-Landau model with additive noise, the correlations of which are local in space but decay as a power-law with exponent \alpha in time. These correlations are assumed to be due to the coupling to an equilibrium thermal bath. We study both the equilibrium dynamics at the critical point and quenches towards it, deriving the corresponding scaling forms and the associated equilibrium and non-equilibrium critical exponents \eta, \nu, z and \theta. We show that, while the first two retain their equilibrium values independently of \alpha, the non-Markovian character of the dynamics affects the dynamic exponents (z and \theta) for \alpha < \alpha_c(D, N) where D is the spatial dimensionality, N the number of components of the order parameter, and \alpha_c(x,y) a function which we determine at second order in 4-D. We analyze the dependence of the asymptotic fluctuation-dissipation ratio on various parameters, including \alpha. We discuss the implications of our results for several physical situations

    Meandered-slot antennas for sensor-RFID tags

    Get PDF
    This letter introduces a planar antenna layout suited to Sensor-RFID fabrication. The geometry is based on a meandered-slot profile on a suspended patch and permits to host sensors and electronics in a small space. The available geometrical parameters are optimized by means of a Genetic Algorithm (GA) procedure aimed to maximize the antenna realized gain. The antenna performances are discussed through examples and prototypes

    Fractional pseudo-Newton method and its use in the solution of a nonlinear system that allows the construction of a hybrid solar receiver

    Full text link
    The following document presents a possible solution and a brief stability analysis for a nonlinear system, which is obtained by studying the possibility of building a hybrid solar receiver; It is necessary to mention that the solution of the aforementioned system is relatively difficult to obtain through iterative methods since the system is apparently unstable. To find this possible solution is used a novel numerical method valid for one and several variables, which using the fractional derivative, allows us to find solutions for some nonlinear systems in the complex space using real initial conditions, this method is also valid for linear systems. The method described above has an order of convergence (at least) linear, but it is easy to implement and it is not necessary to invert some matrix for solving nonlinear systems and linear systems.Comment: arXiv admin note: text overlap with arXiv:1908.0145

    Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations

    Full text link
    We present new many-parameter families of strongly and symmetric hyperbolic formulations of Einstein's equations that include quite general algebraic and live gauge conditions for the lapse. The first system that we present has 30 variables and incorporates an algebraic relationship between the lapse and the determinant of the three metric that generalizes the densitized lapse prescription. The second system has 34 variables and uses a family of live gauges that generalizes the Bona-Masso slicing conditions. These systems have free parameters even after imposing hyperbolicity and are expected to be useful in 3D numerical evolutions. We discuss under what conditions there are no superluminal characteristic speeds
    corecore