16,393 research outputs found
The role of initial conditions in the ageing of the long-range spherical model
The kinetics of the long-range spherical model evolving from various initial
states is studied. In particular, the large-time auto-correlation and -response
functions are obtained, for classes of long-range correlated initial states,
and for magnetized initial states. The ageing exponents can depend on certain
qualitative features of initial states. We explicitly find the conditions for
the system to cross over from ageing classes that depend on initial conditions
to those that do not.Comment: 15 pages; corrected some typo
E-ELT constraints on runaway dilaton scenarios
We use a combination of simulated cosmological probes and astrophysical tests
of the stability of the fine-structure constant , as expected from the
forthcoming European Extremely Large Telescope (E-ELT), to constrain the class
of string-inspired runaway dilaton models of Damour, Piazza and Veneziano. We
consider three different scenarios for the dark sector couplings in the model
and discuss the observational differences between them. We improve previously
existing analyses investigating in detail the degeneracies between the
parameters ruling the coupling of the dilaton field to the other components of
the universe, and studying how the constraints on these parameters change for
different fiducial cosmologies. We find that if the couplings are small (e.g.,
) these degeneracies strongly affect the constraining
power of future data, while if they are sufficiently large (e.g.,
, as in agreement with current
constraints) the degeneracies can be partially broken. We show that E-ELT will
be able to probe some of this additional parameter space.Comment: 16 pages, 8 figures. Updated version matching the one accepted by
JCA
La vida humana entre la perfección y la caída según san Agustín
In this analysis of St. Augustine’s concept of natural law, the focus
will be on the way he presents, in a continuous development,
the ideas of moral compulsion and personal growth. In Augustine’s
interpretation of the biblical text, the foundations of natural
law are provided, such that morality is not simply the fruit of consensus.
Man is seen not only as a product of history, even though
he cannot be understood outside of it. The natural order and the
supernatural order are this way tied together
Entanglement entropy of two disjoint intervals in c=1 theories
We study the scaling of the Renyi entanglement entropy of two disjoint blocks
of critical lattice models described by conformal field theories with central
charge c=1. We provide the analytic conformal field theory result for the
second order Renyi entropy for a free boson compactified on an orbifold
describing the scaling limit of the Ashkin-Teller (AT) model on the self-dual
line. We have checked this prediction in cluster Monte Carlo simulations of the
classical two dimensional AT model. We have also performed extensive numerical
simulations of the anisotropic Heisenberg quantum spin-chain with tree-tensor
network techniques that allowed to obtain the reduced density matrices of
disjoint blocks of the spin-chain and to check the correctness of the
predictions for Renyi and entanglement entropies from conformal field theory.
In order to match these predictions, we have extrapolated the numerical results
by properly taking into account the corrections induced by the finite length of
the blocks to the leading scaling behavior.Comment: 37 pages, 23 figure
The One-dimensional KPZ Equation and the Airy Process
Our previous work on the one-dimensional KPZ equation with sharp wedge
initial data is extended to the case of the joint height statistics at n
spatial points for some common fixed time. Assuming a particular factorization,
we compute an n-point generating function and write it in terms of a Fredholm
determinant. For long times the generating function converges to a limit, which
is established to be equivalent to the standard expression of the n-point
distribution of the Airy process.Comment: 15 page
Critical Langevin dynamics of the O(N)-Ginzburg-Landau model with correlated noise
We use the perturbative renormalization group to study classical stochastic
processes with memory. We focus on the generalized Langevin dynamics of the
\phi^4 Ginzburg-Landau model with additive noise, the correlations of which are
local in space but decay as a power-law with exponent \alpha in time. These
correlations are assumed to be due to the coupling to an equilibrium thermal
bath. We study both the equilibrium dynamics at the critical point and quenches
towards it, deriving the corresponding scaling forms and the associated
equilibrium and non-equilibrium critical exponents \eta, \nu, z and \theta. We
show that, while the first two retain their equilibrium values independently of
\alpha, the non-Markovian character of the dynamics affects the dynamic
exponents (z and \theta) for \alpha < \alpha_c(D, N) where D is the spatial
dimensionality, N the number of components of the order parameter, and
\alpha_c(x,y) a function which we determine at second order in 4-D. We analyze
the dependence of the asymptotic fluctuation-dissipation ratio on various
parameters, including \alpha. We discuss the implications of our results for
several physical situations
Meandered-slot antennas for sensor-RFID tags
This letter introduces a planar antenna layout suited to Sensor-RFID fabrication. The geometry is based on a meandered-slot profile on a suspended patch and permits to host sensors and electronics in a small space. The available geometrical parameters are optimized by means of a Genetic Algorithm (GA) procedure aimed to maximize the antenna realized gain. The antenna performances are discussed through examples and prototypes
Fractional pseudo-Newton method and its use in the solution of a nonlinear system that allows the construction of a hybrid solar receiver
The following document presents a possible solution and a brief stability
analysis for a nonlinear system, which is obtained by studying the possibility
of building a hybrid solar receiver; It is necessary to mention that the
solution of the aforementioned system is relatively difficult to obtain through
iterative methods since the system is apparently unstable. To find this
possible solution is used a novel numerical method valid for one and several
variables, which using the fractional derivative, allows us to find solutions
for some nonlinear systems in the complex space using real initial conditions,
this method is also valid for linear systems. The method described above has an
order of convergence (at least) linear, but it is easy to implement and it is
not necessary to invert some matrix for solving nonlinear systems and linear
systems.Comment: arXiv admin note: text overlap with arXiv:1908.0145
Exploiting gauge and constraint freedom in hyperbolic formulations of Einstein's equations
We present new many-parameter families of strongly and symmetric hyperbolic
formulations of Einstein's equations that include quite general algebraic and
live gauge conditions for the lapse. The first system that we present has 30
variables and incorporates an algebraic relationship between the lapse and the
determinant of the three metric that generalizes the densitized lapse
prescription. The second system has 34 variables and uses a family of live
gauges that generalizes the Bona-Masso slicing conditions. These systems have
free parameters even after imposing hyperbolicity and are expected to be useful
in 3D numerical evolutions. We discuss under what conditions there are no
superluminal characteristic speeds
- …
