57 research outputs found

    The Transcription Factor Cux1 Regulates Dendritic Morphology of Cortical Pyramidal Neurons

    Get PDF
    In the murine cerebral cortex, mammalian homologues of the Cux family transcription factors, Cux1 and Cux2, have been identified as restricted molecular markers for the upper layer (II-IV) pyramidal neurons. However, their functions in cortical development are largely unknown. Here we report that increasing the intracellular level of Cux1, but not Cux2, reduced the dendritic complexity of cultured cortical pyramidal neurons. Consistently, reducing the expression of Cux1 promoted the dendritic arborization in these pyramidal neurons. This effect required the existence of the DNA-binding domains, hence the transcriptional passive repression activity of Cux1. Analysis of downstream signals suggested that Cux1 regulates dendrite development primarily through suppressing the expression of the cyclin-dependent kinase inhibitor p27Kip1, and RhoA may mediate the regulation of dendritic complexity by Cux1 and p27. Thus, Cux1 functions as a negative regulator of dendritic complexity for cortical pyramidal neurons

    mRNA accumulation in the Cajal bodies of the diplotene larch microsporocyte

    Get PDF
    In microsporocytes of the European larch, we demonstrated the presence of several mRNAs in spherical nuclear bodies. In the nuclei of microsporocytes, we observed up to 12 bodies, ranging from 0.5 to 6 Όm in diameter, during the prophase of the first meiotic division. Our previous studies revealed the presence of polyadenylated RNA (poly(A) RNA) in these bodies, but did not confirm the presence of nascent transcripts or splicing factors of the SR family. The lack of these molecules precludes the bodies from being the sites of synthesis and early maturation of primary transcripts (KoƂowerzo et al., Protoplasma 236:13–19, 2009). However, the bodies serve as sites for the accumulation of splicing machinery, including the Sm proteins and small nuclear RNAs. Characteristic ultrastructures and the molecular composition of the nuclear bodies, which contain poly(A) RNA, are indicative of Cajal bodies (CBs). Here, we demonstrated the presence of several housekeeping gene transcripts—α-tubulin, pectin methylesterase, peroxidase and catalase, ATPase, and inositol-3-phosphate synthase—in CBs. Additionally, we observed transcripts of the RNA polymerase II subunits RPB2 and RPB10 RNA pol II and the core spliceosome proteins mRNA SmD1, SmD2, and SmE. The co-localization of nascent transcripts and mRNAs indicates that mRNA accumulation/storage, particularly in CBs, occurs in the nucleus of microsporocytes

    Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic. The past and the near future.

    Get PDF
    This study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases. A survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019. Questionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples. The COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe

    Understanding the retinal basis of vision across species

    Get PDF
    The vertebrate retina first evolved some 500 million years ago in ancestral marine chordates. Since then, the eyes of different species have been tuned to best support their unique visuoecological lifestyles. Visual specializations in eye designs, large-scale inhomogeneities across the retinal surface and local circuit motifs mean that all species' retinas are unique. Computational theories, such as the efficient coding hypothesis, have come a long way towards an explanation of the basic features of retinal organization and function; however, they cannot explain the full extent of retinal diversity within and across species. To build a truly general understanding of vertebrate vision and the retina's computational purpose, it is therefore important to more quantitatively relate different species' retinal functions to their specific natural environments and behavioural requirements. Ultimately, the goal of such efforts should be to build up to a more general theory of vision

    Clinical and molecular practice of European thoracic pathology laboratories during the COVID-19 pandemic The past and the near future

    Get PDF
    BackgroundThis study evaluated the consequences in Europe of the COVID-19 outbreak on pathology laboratories orientated toward the diagnosis of thoracic diseases.Materials and methodsA survey was sent to 71 pathology laboratories from 21 European countries. The questionnaire requested information concerning the organization of biosafety, the clinical and molecular pathology, the biobanking, the workload, the associated research into COVID-19, and the organization of education and training during the COVID-19 crisis, from 15 March to 31 May 2020, compared with the same period in 2019.ResultsQuestionnaires were returned from 53/71 (75%) laboratories from 18 European countries. The biosafety procedures were heterogeneous. The workload in clinical and molecular pathology decreased dramatically by 31% (range, 3%-55%) and 26% (range, 7%-62%), respectively. According to the professional category, between 28% and 41% of the staff members were not present in the laboratories but did teleworking. A total of 70% of the laboratories developed virtual meetings for the training of residents and junior pathologists. During the period of study, none of the staff members with confirmed COVID-19 became infected as a result of handling samples.ConclusionsThe COVID-19 pandemic has had a strong impact on most of the European pathology laboratories included in this study. Urgent implementation of several changes to the organization of most of these laboratories, notably to better harmonize biosafety procedures, was noted at the onset of the pandemic and maintained in the event of a new wave of infection occurring in Europe
    • 

    corecore