240 research outputs found
Improving plastic management by means of people awareness
In past decades the usage of plastic has seen a tremendous increment. This raise is mainly caused by industrial development and by the spread of this material in every aspect of people life, from food package to aerospace application. For sure plastic has a key role in society and it is not possible to erase, nevertheless its overuse has a serious impact on the environment as well know. In particular, just a few percentage of the total amount of plastic is recycled, the rest has to be landfilled or burnt causing serious pollution side effect. This poor circularity in plastic value chain is mainly caused by difficulties in sorting processes and expensiveness of recycling. By the way a great part of plastic applications could be avoided without implying a reduction in life quality for the people. In addition, a better education in plastic objects shopping and plastic waste management could decrease the difficulties in sorting and recycling. One of the crucial reason why these applications and incorrect behaviour are still present is that the information on alternatives are not present or very hard to be found. In the present paper a novel platform to enhance a more plastic-free life is presented. First a detailed description of the problem is stated, then the process to achieve the proposed solution is described. Finally the platform prototype is analysed in details among its functionalities
Future in the past: Azorella glabra wedd. as a source of new natural compounds with antiproliferative and cytotoxic activity on multiple myeloma cells
Multiple myeloma (MM) is the second most common hematologic malignancy and, although the development of novel agents has improved survival of patients, to date, it remains incurable. Thus, newer and more effective therapeutic strategies against this malignancy are necessary. Plant extracts play an important role in anti-tumor drug discovery. For this reason, in the investigation of novel natural anti-MM agents, we evaluated the phytochemical profiles, in vitro antioxidant activity, and effects on MM cells of Azorella glabra (AG) Wedd. Total polyphenols (TPC), flavonoids (TFC), and terpenoids (TTeC) contents were different among samples and the richest fractions in polyphenols demonstrated a higher antioxidant activity in in vitro assays. Some fractions showed a dose and time dependent anti-proliferative activity on MM cells. The chloroform fraction (CHCl 3 ) showed major effects in terms of reduction of cell viability, induction of apoptosis, and cell cycle arrest on MM cells. The apoptosis induction was also confirmed by the activation of caspase-3. Importantly, the CHCl 3 fraction exhibited a negligible effect on the viability of healthy cells. These results encourage further investigations on AG extracts to identify specific bioactive compounds and to define their potential applications in MM
DNA methylation dynamic of bone marrow hematopoietic stem cells after allogeneic transplantation
Background: Allogeneic hematopoietic stem cell transplantation (AHSCT) is a curative therapeutic approach for different hematological malignancies (HMs), and epigenetic modifications, including DNA methylation, play a role in the reconstitution of the hematopoietic system after AHSCT. This study aimed to explore global DNA methylation dynamic of bone marrow (BM) hematopoietic stem and progenitor cells (HSPCs) from donors and their respective recipients affected by acute myeloid leukemia (AML), acute lymphoid leukemia (ALL) and Hodgkin lymphoma (HL) during the first year after transplant. Methods: We measured DNA methylation profile by Illumina HumanMethylationEPIC in BM HSPC of 10 donors (t0) and their matched recipients at different time points after AHSCT, at day + 30 (t1), + 60 (t2), + 120 (t3), + 180 (t4), and + 365 (t5). Differential methylation analysis was performed by using R software and CRAN/Bioconductor packages. Gene set enrichment analysis was carried out on promoter area of significantly differentially methylated genes by clusterProfiler package and the mSigDB genes sets. Results: Results show significant differences in the global methylation profile between HL and acute leukemias, and between patients with mixed and complete chimerism, with a strong methylation change, with prevailing hypermethylation, occurring 30 days after AHSCT. Functional analysis of promoter methylation changes identified genes involved in hematopoietic cell activation, differentiation, shaping, and movement. This could be a consequence of donor cell “adaptation” in recipient BM niche. Interestingly, this epigenetic remodeling was reversible, since methylation returns similar to that of donor HSPCs after 1 year. Only for a pool of genes, mainly involved in dynamic shaping and trafficking, the DNA methylation changes acquired after 30 days were maintained for up to 1 year post-transplant. Finally, preliminary data suggest that the methylation profile could be used as predictor of relapse in ALL. Conclusions: Overall, these data provide insights into the DNA methylation changes of HSPCs after transplantation and a new framework to investigate epigenetics of AHSCT and its outcomes
Advances in Azorella glabra Wedd. Extract research: In vitro antioxidant activity, antiproliferative effects on acute myeloid leukemia cells and bioactive compound characterization
Azorella glabra Wedd. (AG) is traditionally used to treat gonorrhea or kidney's problems. The antioxidant, antidiabetic, anticholinesterase and in vitro antitumor activities of AG extracts were recently reported. The aim of this work was to investigate anti-leukemic properties of AG chloroform fraction (AG CHCl3) and of its ten sub-fractions (I-X) and to identify their possible bioactive compounds. We determined their in vitro antioxidant activity using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulfonic acid) (ABTS), nitric oxide (NO) and superoxide anion (SO) assays, and their phytochemical profile by spectrophotometric and LC-MS/MS techniques. I-X action on two acute myeloid leukemia (AML) cell lines viability, apoptosis and cell cycle were evaluated by MTS, western blotting and cytofluorimetric assays. Different polyphenol, flavonoid and terpenoid amount, and antioxidant activity were found among all samples. Most of I-X induced a dose/time dependent reduction of cell viability higher than parent extract. IV and VI sub-fractions showed highest cytotoxic activity and, of note, a negligible reduction of healthy cell viability. They activated intrinsic apoptotic pathway, induced a G0/G1 block in leukemic cells and, interestingly, led to apoptosis in patient AML cells. These activities could be due to mulinic acid or azorellane terpenoids and their derivatives, tentatively identified in both IV and VI. In conclusion, our data suggest AG plant as a source of potential anti-AML agents
A consensus research agenda for optimising nasal drug delivery
Nasal drug delivery has specific challenges which are distinct from oral inhalation, alongside which it is often considered. The next generation of nasal products will be required to deliver new classes of molecule, e.g. vaccines, biologics and drugs with action in the brain or sinuses, to local and systemic therapeutic targets. Innovations and new tools/knowledge are required to design products to deliver these therapeutic agents to the right target at the right time in the right patients. We report the outcomes of an expert meeting convened to consider gaps in knowledge and unmet research needs in terms of (i) formulation and devices, (ii) meaningful product characterization and modeling, (iii) opportunities to modify absorption and clearance. Important research questions were identified in the areas of device and formulation innovation, critical quality attributes for different nasal products, development of nasal casts for drug deposition studies, improved experimental models, the use of simulations and nasal delivery in special populations. We offer these questions as a stimulus to research and suggest that they might be addressed most effectively by collaborative research endeavors
Shape resonance for the anisotropic superconducting gaps near a Lifshitz transition: the effect of electron hopping between layers
The multigap superconductivity modulated by quantum confinement effects in a
superlattice of quantum wells is presented. Our theoretical BCS approach
captures the low-energy physics of a shape resonance in the superconducting
gaps when the chemical potential is tuned near a Lifshitz transition. We focus
on the case of weak Cooper-pairing coupling channels and strong pair exchange
interaction driven by repulsive Coulomb interaction that allows to use the BCS
theory in the weak-coupling regime neglecting retardation effects like in
quantum condensates of ultracold gases. The calculated matrix element effects
in the pairing interaction are shown to yield a complex physics near the
particular quantum critical points due to Lifshitz transitions in multigap
superconductivity. Strong deviations of the ratio from the
standard BCS value as a function of the position of the chemical potential
relative to the Lifshitz transition point measured by the Lifshitz parameter
are found. The response of the condensate phase to the tuning of the Lifshitz
parameter is compared with the response of ultracold gases in the BCS-BEC
crossover tuned by an external magnetic field. The results provide the
description of the condensates in this regime where matrix element effects play
a key role.Comment: 12 pages, 6 figure
The effect of internal pressure on the tetragonal to monoclinic structural phase transition in ReOFeAs: the case of NdOFeAs
We report the temperature dependent x-ray powder diffraction of the
quaternary compound NdOFeAs (also called NdFeAsO) in the range between 300 K
and 95 K. We have detected the structural phase transition from the tetragonal
phase, with P4/nmm space group, to the orthorhombic or monoclinic phase, with
Cmma or P112/a1 (or P2/c) space group, over a broad temperature range from 150
K to 120 K, centered at T0 ~137 K. Therefore the temperature of this structural
phase transition is strongly reduced, by about ~30K, by increasing the internal
chemical pressure going from LaOFeAs to NdOFeAs. In contrast the
superconducting critical temperature increases from 27 K to 51 K going from
LaOFeAs to NdOFeAs doped samples. This result shows that the normal striped
orthorhombic Cmma phase competes with the superconducting tetragonal phase.
Therefore by controlling the internal chemical pressure in new materials it
should be possible to push toward zero the critical temperature T0 of the
structural phase transition, giving the striped phase, in order to get
superconductors with higher Tc.Comment: 9 pages, 3 figure
From Majorana theory of atomic autoionization to Feshbach resonances in high temperature superconductors
The Ettore Majorana paper - Theory of incomplete P triplets- published in
1931, focuses on the role of selection rules for the non-radiative decay of two
electron excitations in atomic spectra, involving the configuration interaction
between discrete and continuum channels. This work is a key step for
understanding the 1935 work of Ugo Fano on the asymmetric lineshape of two
electron excitations and the 1958 Herman Feshbach paper on the shape resonances
in nuclear scattering arising from configuration interaction between many
different scattering channels. The Feshbach resonances are today of high
scientific interest in many different fields and in particular for ultracold
gases and high Tc superconductivity.Comment: 13 pages, 7 figures. Journal of Superconductivity and Novel Magnetism
to be publishe
Molecular classification and pharmacogenetics of primary plasma cell leukemia: an initial approach toward precision medicine
Primary plasma cell leukemia (pPCL) is a rare and aggressive variant of multiple myeloma (MM) which may represent a valid model for high-risk MM. This disease is associated with a very poor prognosis, and unfortunately, it has not significantly improved during the last three decades. New high-throughput technologies have allowed a better understanding of the molecular basis of this disease and moved toward risk stratification, providing insights for targeted therapy studies. This knowledge, added to the pharmacogenetic profile of new and old agents in the analysis of efficacy and safety, could contribute to help clinical decisions move toward a precision medicine and a better clinical outcome for these patients. In this review, we describe the available literature concerning the genomic characterization and pharmacogenetics of plasma cell leukemia (PCL)
- …