39 research outputs found

    Beneficial modulation of the gut microbiota

    Get PDF
    peer-reviewedThe human gut microbiota comprises approximately 100 trillion microbial cells and has a significant effect on many aspects of human physiology including metabolism, nutrient absorption and immune function. Disruption of this population has been implicated in many conditions and diseases, including examples such as obesity, inflammatory bowel disease and colorectal cancer that are highlighted in this review. A logical extension of these observations suggests that the manipulation of the gut microbiota can be employed to prevent or treat these conditions. Thus, here we highlight a variety of options, including the use of changes in diet (including the use of prebiotics), antimicrobial-based intervention, probiotics and faecal microbiota transplantation, and discuss their relative merits with respect to modulating the intestinal community in a beneficial way.C.J.W, C.M.G. and P.D.C are supported by a SFI PI award “Obesibiotics” (11/PI/1137

    Atypical Listeria innocua strains possess an intact LIPI-3

    Get PDF
    peer-reviewedBackground: Listeria monocytogenes is a food-borne pathogen which is the causative agent of listeriosis and can be divided into three evolutionary lineages I, II and III. While all strains possess the well established virulence factors associated with the Listeria pathogenicity island I (LIPI-1), lineage I strains also possess an additional pathogenicity island designated LIPI-3 which encodes listeriolysin S (LLS), a post-translationally modified cytolytic peptide. Up until now, this pathogenicity island has been identified exclusively in a subset of lineage I isolates of the pathogen Listeria monocytogenes. Results: In total 64 L. innocua strains were screened for the presence of LIPI-3. Here we report the identification of an intact LIPI-3 in 11 isolates of L. innocua and the remnants of the cluster in several others. Significantly, we can reveal that placing the L. innocua lls genes under the control of a constitutive promoter results in a haemolytic phenotype, confirming that the cluster is capable of encoding a functional haemolysin. Conclusions: Although the presence of the LIPI-3 gene cluster is confined to lineage I isolates of L. monocytogenes, a corresponding gene cluster or its remnants have been identified in many L. innocua strains.This work was funded by the Enterprise Ireland Commercialisation fund, a programme which is co-financed by the EU through the ERDF. This work was also supported by the Irish Government under the National Development Plan, through Science Foundation Ireland Investigator awards; (06/IN.1/B98) and (10/IN.1/B3027)

    Potential Use of Biotherapeutic Bacteria to Target Colorectal Cancer-Associated Taxa

    Get PDF
    peer-reviewedThe role of the gut microbiome in human health and disease is the focus of much attention. It has been widely agreed upon that our gut bacteria play a role in host immunity, nutrient absorption, digestion, metabolism, and other key drivers of health. Furthermore, certain microbial signatures and specific taxa have also been associated with the development of diseases, such as obesity; inflammatory bowel disease; and, indeed, colorectal cancer (CRC), which is the focus of this review. By extension, such taxa represent potential therapeutic targets. In particular, the emerging human pathogen Fusobacterium nucleatum represents an important agent in CRC development and its control within the gastrointestinal tract is desirable. This paper reviews the principal bacterial pathogens that have been associated with CRC to date and discusses the in vitro and human studies that have shown the potential use of biotherapeutic strains as a means of targeting CRC-associated bacteria

    Polymorphisms in stress response genes in Lactobacillus plantarum: implications for classification and heat stress response

    Get PDF
    The polymorphism of 5 stress response genes (hrcA, ctsR, clpP, ftsH, dnaK) in 32 Lactobacillus plantarum strains was evaluated by multilocus restriction typing (MLRT) and by sequence analysis of ctsR, hrcA and clpP genes. Both these approaches allowed the discrimination of the subspecies L. plantarum ssp. plantarum and L. plantarum ssp. argentoratensis. HrcA sequence analysis also allowed discrimination at the species and subspecies level of several species of lactic acid bacteria, thus confirming that it can be used as a valuable taxonomic marker. No significant relationship was found between stress response gene polymorphism and resistance to heat treatments. The effect of temperature on growth kinetics and the protein expression were investigated for selected strains carrying different mutations in hrcA. L. plantarum ssp. argentoratensis NCIMB12120 and L. plantarum ssp. plantarum DPC2159, both of which had mutations in domains of HrcA which are important for the repressor functionality, had a reduced growth rate at all temperatures tested (25, 30, 37, 40, and 42 °C) compared to L. plantarum WCFS1. In L. plantarum DPC2159, protein expression upon temperature shifts from 25 to 40 °C or growth at 40 °C was altered compared to L. plantarum WCFS1, but further study is needed to unequivocally confirm the relationship with mutations in hrcA

    Impact of Environmental Factors on Bacteriocin Promoter Activity in Gut-Derived Lactobacillus salivarius

    Get PDF
    peer-reviewedBacteriocin production is regarded as a desirable probiotic trait that aids in colonization and persistence in the gastrointestinal tract (GIT). Strains of Lactobacillus salivarius, a species associated with the GIT, are regarded as promising probiotic candidates and have a number of associated bacteriocins documented to date. These include multiple class IIb bacteriocins (salivaricin T, salivaricin P, and ABP-118) and the class IId bacteriocin bactofencin A, which show activity against medically important pathogens. However, the production of a bacteriocin in laboratory media does not ensure production under stressful environmental conditions, such as those encountered within the GIT. To allow this issue to be addressed, the promoter regions located upstream of the structural genes encoding the L. salivarius bacteriocins mentioned above were fused to a number of reporter proteins (green fluorescent protein [GFP], red fluorescent protein [RFP], and luciferase [Lux]). Of these, only transcriptional fusions to GFP generated signals of sufficient strength to enable the study of promoter activity in L. salivarius. While analysis of the class IIb bacteriocin promoter regions indicated relatively weak GFP expression, assessment of the promoter of the antistaphylococcal bacteriocin bactofencin A revealed a strong promoter that is most active in the absence of the antimicrobial peptide and is positively induced in the presence of mild environmental stresses, including simulated gastric fluid. Taken together, these data provide information on factors that influence bacteriocin production, which will assist in the development of strategies to optimize in vivo and in vitro production of these antimicrobials.This work was funded by a SFI PI award “Obesibiotics” (11/PI/1137) to PD

    In silico identification of bacteriocin gene clusters in the gastrointestinal tract, based on the Human Microbiome Project’s reference genome database

    Get PDF
    peer-reviewedBackground The human gut microbiota comprises approximately 100 trillion microbial cells which significantly impact many aspects of human physiology - including metabolism, nutrient absorption and immune function. Disturbances in this population have been implicated in many conditions and diseases, including obesity, type-2 diabetes and inflammatory bowel disease. This suggests that targeted manipulation or shaping of the gut microbiota, by bacteriocins and other antimicrobials, has potential as a therapeutic tool for the prevention or treatment of these conditions. With this in mind, several studies have used traditional culture-dependent approaches to successfully identify bacteriocin-producers from the mammalian gut. In silico-based approaches to identify novel gene clusters are now also being utilised to take advantage of the vast amount of data currently being generated by next generation sequencing technologies. In this study, we employed an in silico screening approach to mine potential bacteriocin clusters in genome-sequenced isolates from the gastrointestinal tract (GIT). More specifically, the bacteriocin genome-mining tool BAGEL3 was used to identify potential bacteriocin producers in the genomes of the GIT subset of the Human Microbiome Project’s reference genome database. Each of the identified gene clusters were manually annotated and potential bacteriocin-associated genes were evaluated. Results We identified 74 clusters of note from 59 unique members of the Firmicutes, Bacteroidetes, Actinobacteria, Fusobacteria and Synergistetes. The most commonly identified class of bacteriocin was the >10 kDa class, formerly known as bacteriolysins, followed by lantibiotics and sactipeptides. Conclusions Multiple bacteriocin gene clusters were identified in a dataset representative of the human gut microbiota. Interestingly, many of these were associated with species and genera which are not typically associated with bacteriocin production.CJW, CMG and PDC are supported by a SFI PI award to PDC “Obesibiotics” (11/PI/1137)

    Detection of presumptive Bacillus cereus in the Irish dairy farm environment

    Get PDF
    peer-reviewedThe objective of the study was to isolate potential Bacillus cereus sensu lato (B. cereus s.l.) from a range of farm environments. Samples of tap water, milking equipment rinse water, milk sediment filter, grass, soil and bulk tank milk were collected from 63 farms. In addition, milk liners were swabbed at the start and the end of milking, and swabs were taken from cows’ teats prior to milking. The samples were plated on mannitol egg yolk polymyxin agar (MYP) and presumptive B. cereus s.l. colonies were isolated and stored in nutrient broth with 20% glycerol and frozen at -80 °C. These isolates were then plated on chromogenic medium (BACARA) and colonies identified as presumptive B. cereus s.l. on this medium were subjected to 16S ribosomal RNA (rRNA) sequencing. Of the 507 isolates presumed to be B. cereus s.l. on the basis of growth on MYP, only 177 showed growth typical of B. cereus s.l. on BACARA agar. The use of 16S rRNA sequencing to identify isolates that grew on BACARA confirmed that the majority of isolates belonged to B. cereus s.l. A total of 81 of the 98 isolates sequenced were tentatively identified as presumptive B. cereus s.l. Pulsed-field gel electrophoresis was carried out on milk and soil isolates from seven farms that were identified as having presumptive B. cereus s.l. No pulsotype was shared by isolates from soil and milk on the same farm. Presumptive B. cereus s.l. was widely distributed within the dairy farm environment

    Genome Sequence of Staphylococcus saprophyticus DPC5671, a Strain Isolated from Cheddar Cheese

    Get PDF
    peer-reviewedThe draft genome sequence of Staphylococcus saprophyticus DPC5671, isolated from cheddar cheese, was determined. S. saprophyticus is a common Gram-positive bacterium detected on the surface of smear-ripened cheese and other fermented foods

    Tn6188 - A Novel Transposon in Listeria monocytogenes Responsible for Tolerance to Benzalkonium Chloride

    Get PDF
    peer-reviewedControlling the food-borne pathogen Listeria (L.) monocytogenes is of great importance from a food safety perspective, and thus for human health. The consequences of failures in this regard have been exemplified by recent large listeriosis outbreaks in the USA and Europe. It is thus particularly notable that tolerance to quaternary ammonium compounds such as benzalkonium chloride (BC) has been observed in many L. monocytogenes strains. However, the molecular determinants and mechanisms of BC tolerance of L. monocytogenes are still largely unknown. Here we describe Tn6188, a novel transposon in L. monocytogenes conferring tolerance to BC. Tn6188 is related to Tn554 from Staphylococcus (S.) aureus and other Tn554-like transposons such as Tn558, Tn559 and Tn5406 found in various Firmicutes. Tn6188 comprises 5117 bp, is integrated chromosomally within the radC gene and consists of three transposase genes (tnpABC) as well as genes encoding a putative transcriptional regulator and QacH, a small multidrug resistance protein family (SMR) transporter putatively associated with export of BC that shows high amino acid identity to Smr/QacC from S. aureus and to EmrE from Escherichia coli. We screened 91 L. monocytogenes strains for the presence of Tn6188 by PCR and found Tn6188 in 10 of the analyzed strains. These isolates were from food and food processing environments and predominantly from serovar 1/2a. L. monocytogenes strains harboring Tn6188 had significantly higher BC minimum inhibitory concentrations (MICs) (28.5 ± 4.7 mg/l) than strains without Tn6188 (14 ± 3.2 mg/l). Using quantitative reverse transcriptase PCR we could show a significant increase in qacH expression in the presence of BC. QacH deletion mutants were generated in two L. monocytogenes strains and growth analysis revealed that ΔqacH strains had lower BC MICs than wildtype strains. In conclusion, our results provide evidence that Tn6188 is responsible for BC tolerance in various L. monocytogenes strains.This work was supported by a grant from the Austrian Science Fund (FWF, http://www.fwf.ac.at/) to SSE (grant no. P22703‐B17), by the European Union funded integrated project BIOTRACER (contract no. 036272) under the 6th RTD framework and by the EU grant FP7‐KBBE‐2010‐4 (FOODSEG)

    Phages of non-dairy lactococci: isolation and characterization of ΦL47, a phage infecting the grass isolate Lactococcus lactis ssp. cremoris DPC6860

    Get PDF
    peer reviewedLactococci isolated from non-dairy sources have been found to possess enhanced metabolic activity when compared to dairy strains. These capabilities may be harnessed through the use of these strains as starter or adjunct cultures to produce more diverse flavor profiles in cheese and other dairy products. To understand the interactions between these organisms and the phages that infect them, a number of phages were isolated against lactococcal strains of non-dairy origin. One such phage, ΦL47, was isolated from a sewage sample using the grass isolate L. lactis ssp. cremoris DPC6860 as a host. Visualization of phage virions by transmission electron microscopy established that this phage belongs to the family Siphoviridae and possesses a long tail fiber, previously unseen in dairy lactococcal phages. Determination of the lytic spectrum revealed a broader than expected host range, with ΦL47 capable of infecting 4 industrial dairy strains, including ML8, HP and 310, and 3 additional non-dairy isolates. Whole genome sequencing of ΦL47 revealed a dsDNA genome of 128, 546 bp, making it the largest sequenced lactococcal phage to date. In total, 190 open reading frames (ORFs) were identified, and comparative analysis revealed that the predicted products of 117 of these ORFs shared greater than 50% amino acid identity with those of L. lactis phage Φ949, a phage isolated from cheese whey. Despite their different ecological niches, the genomic content and organization of ΦL47 and Φ949 are quite similar, with both containing 4 gene clusters oriented in different transcriptional directions. Other features that distinguish ΦL47 from Φ949 and other lactococcal phages, in addition to the presence of the tail fiber and the genome length, include a low GC content (32.5%) and a high number of predicted tRNA genes (8). Comparative genome analysis supports the conclusion that ΦL47 is a new member of the 949 lactococcal phage group which currently includes the dairy Φ949
    corecore