11 research outputs found

    Activity-mediated AMPA receptor remodeling, driven by alternative splicing in the ligand-binding domain

    Get PDF
    The AMPA-type glutamate receptor (AMPAR) subunit composition shapes synaptic transmission and varies throughout development and in response to different input patterns. Here, we show that chronic activity deprivation gives rise to synaptic AMPAR responses with enhanced fidelity. Extrasynaptic AMPARs exhibited changes in kinetics and pharmacology associated with splicing of the alternative flip/flop exons. AMPAR mRNA indeed exhibited reprogramming of the flip/flop exons for GluA1 and GluA2 subunits in response to activity, selectively in the CA1 subfield. However, the functional changes did not directly correlate with the mRNA expression profiles but result from altered assembly of GluA1/GluA2 subunit splice variants, uncovering an additional regulatory role for flip/flop splicing in excitatory signaling. Our results suggest that activity-dependent AMPAR remodeling underlies changes in short-term synaptic plasticity and provides a mechanism for neuronal homeostasis

    Gating and modulation of a hetero-octameric AMPA glutamate receptor

    No full text
    AMPA receptors (AMPARs) mediate the majority of excitatory transmission in the brain and enable the synaptic plasticity that underlies learning1. A diverse array of AMPAR signalling complexes are established by receptor auxiliary subunits, which associate with the AMPAR in various combinations to modulate trafficking, gating and synaptic strength2. However, their mechanisms of action are poorly understood. Here we determine cryo-electron microscopy structures of the heteromeric GluA1–GluA2 receptor assembled with both TARP-γ8 and CNIH2, the predominant AMPAR complex in the forebrain, in both resting and active states. Two TARP-γ8 and two CNIH2 subunits insert at distinct sites beneath the ligand-binding domains of the receptor, with site-specific lipids shaping each interaction and affecting the gating regulation of the AMPARs. Activation of the receptor leads to asymmetry between GluA1 and GluA2 along the ion conduction path and an outward expansion of the channel triggers counter-rotations of both auxiliary subunit pairs, promoting the active-state conformation. In addition, both TARP-γ8 and CNIH2 pivot towards the pore exit upon activation, extending their reach for cytoplasmic receptor elements. CNIH2 achieves this through its uniquely extended M2 helix, which has transformed this endoplasmic reticulum-export factor into a powerful AMPAR modulator that is capable of providing hippocampal pyramidal neurons with their integrative synaptic properties

    Mapping the Interaction Sites between AMPA Receptors and TARPs Reveals a Role for the Receptor N-Terminal Domain in Channel Gating

    Get PDF
    AMPA-type glutamate receptors (AMPARs) mediate fast neurotransmission at excitatory synapses. The extent and fidelity of postsynaptic depolarization triggered by AMPAR activation are shaped by AMPAR auxiliary subunits, including the transmembrane AMPAR regulatory proteins (TARPs). TARPs profoundly influence gating, an effect thought to be mediated by an interaction with the AMPAR ion channel and ligand binding domain (LBD). Here, we show that the distal N-terminal domain (NTD) contributes to TARP modulation. Alterations in the NTD-LBD linker result in TARP-dependent and TARP-selective changes in AMPAR gating. Using peptide arrays, we identify a TARP interaction region on the NTD and define the path of TARP contacts along the LBD surface. Moreover, we map key binding sites on the TARP itself and show that mutation of these residues mediates gating modulation. Our data reveal a TARP-dependent allosteric role for the AMPAR NTD and suggest that TARP binding triggers a drastic reorganization of the AMPAR complex

    Modulatory mechanisms of TARP γ8-selective AMPA receptor therapeutics

    No full text
    AMPA glutamate receptors (AMPARs) mediate excitatory neurotransmission throughout the brain. Their signalling is uniquely diversified by brain region-specific auxiliary subunits, providing an opportunity for the development of selective therapeutics. AMPARs associated with TARP γ8 are enriched in the hippocampus, and are targets of emerging anti-epileptic drugs. To understand their therapeutic activity, we determined cryo-EM structures of the GluA1/2-γ8 receptor associated with three potent, chemically diverse ligands. We find that despite sharing a lipid-exposed and water-accessible binding pocket, drug action is differentially affected by binding-site mutants. Together with patch-clamp recordings and MD simulations we also demonstrate that ligand-triggered reorganisation of the AMPAR-TARP interface contributes to modulation. Unexpectedly, one ligand (JNJ-61432059) acts bifunctionally, negatively affecting GluA1 but exerting positive modulatory action on GluA2-containing AMPARs, in a TARP stoichiometry-dependent manner. These results further illuminate the action of TARPs, demonstrate the sensitive balance between positive and negative modulatory action, and provide a mechanistic platform for development of both positive and negative selective AMPAR modulators

    Differences in AMPA and Kainate Receptor Interactomes Facilitate Identification of AMPA Receptor Auxiliary Subunit GSG1L

    Get PDF
    AMPA receptor (AMPA-R) complexes consist of channel-forming subunits, GluA1-4, and auxiliary proteins, including TARPs, CNIHs, synDIG1, and CKAMP44, which can modulate AMPA-R function in specific ways. The combinatorial effects of four GluA subunits binding to various auxiliary subunits amplify the functional diversity of AMPA-Rs. The significance and magnitude of molecular diversity, however, remain elusive. To gain insight into the molecular complexity of AMPA and kainate receptors, we compared the proteins that copurify with each receptor type in the rat brain. This interactome study identified the majority of known interacting proteins and, more importantly, provides candidates for additional studies. We validate the claudin homolog GSG1L as a newly identified binding protein and unique modulator of AMPA-R gating, as determined by detailed molecular, cellular, electrophysiological, and biochemical experiments. GSG1L extends the functional variety of AMPA-R complexes, and further investigation of other candidates may reveal additional complexity of ionotropic glutamate receptor function

    Factors influencing success of clinical genome sequencing across a broad spectrum of disorders

    No full text
    To assess factors influencing the success of whole-genome sequencing for mainstream clinical diagnosis, we sequenced 217 individuals from 156 independent cases or families across a broad spectrum of disorders in whom previous screening had identified no pathogenic variants. We quantified the number of candidate variants identified using different strategies for variant calling, filtering, annotation and prioritization. We found that jointly calling variants across samples, filtering against both local and external databases, deploying multiple annotation tools and using familial transmission above biological plausibility contributed to accuracy. Overall, we identified disease-causing variants in 21% of cases, with the proportion increasing to 34% (23/68) for mendelian disorders and 57% (8/14) in family trios. We also discovered 32 potentially clinically actionable variants in 18 genes unrelated to the referral disorder, although only 4 were ultimately considered reportable. Our results demonstrate the value of genome sequencing for routine clinical diagnosis but also highlight many outstanding challenges
    corecore