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SUMMARY

AMPA-type glutamate receptors (AMPARs) mediate
fast neurotransmission at excitatory synapses. The
extent and fidelity of postsynaptic depolarization
triggered by AMPAR activation are shaped by
AMPAR auxiliary subunits, including the transmem-
brane AMPAR regulatory proteins (TARPs). TARPs
profoundly influence gating, an effect thought to be
mediated by an interactionwith the AMPAR ion chan-
nel and ligand binding domain (LBD). Here, we show
that the distal N-terminal domain (NTD) contributes
to TARP modulation. Alterations in the NTD-LBD
linker result in TARP-dependent and TARP-selective
changes in AMPAR gating. Using peptide arrays, we
identify a TARP interaction region on the NTD and
define the path of TARP contacts along the LBD sur-
face. Moreover, we map key binding sites on the
TARP itself and show that mutation of these residues
mediates gatingmodulation. Our data reveal a TARP-
dependent allosteric role for the AMPAR NTD and
suggest that TARP binding triggers a drastic reorga-
nization of the AMPAR complex.

INTRODUCTION

AMPA-type glutamate receptors (AMPARs) mediate fast excit-

atory transmission and are crucial for various forms of synaptic

plasticity (Bredt and Nicoll, 2003; Cull-Candy et al., 2006). Their

varied kinetic behavior (Mosbacher et al., 1994), as well as their

calcium permeability and voltage-dependent block by poly-

amines (Cull-Candy et al., 2006; Geiger et al., 1995), varies be-

tween brain regions and appear to be adapted to the specific

function of a given circuit (Jonas, 2000; Trussell, 1998). These

properties depend on the nature and mRNA processing status

of the four pore-forming subunits (GluA1–GluA4) (Traynelis

et al., 2010; Jonas, 2000) and on the type and stoichiometry of

AMPAR auxiliary subunits (Jackson and Nicoll, 2011).

Four families of auxiliary subunits have been identified: trans-

membrane AMPAR regulatory proteins (TARPs) (Tomita et al.,

2005; Turetsky et al., 2005), cornichons (Schwenk et al., 2009),

CKAMP44 (von Engelhardt et al., 2010), and GSG1L (Schwenk

et al., 2012; Shanks et al., 2012). Most of these alter AMPAR

gating and confer effects that can be specific for a given synapse

or cell. TARPs were the first identified bona fide AMPAR auxiliary

proteins, modifying both AMPAR function and trafficking. Based

on their modulatory actions, TARPs have been classified as type

1a (g-2 and g-3), type 1b (g-4 and g-8), and type 2 (g-5 and g-7)

(Kato et al., 2010). TARP-like modulation of AMPARs has also

been seen in invertebrates (Walker et al., 2006; Wang et al.,

2008) and thus appears highly conserved.

The precise nature of the AMPAR/TARP interaction and thus

the mechanism underlying gating modulation are poorly under-

stood. Both the AMPAR transmembrane region and the ligand

binding domain (LBD) have been implicated in TARP interactions

responsible for the modulation of ligand efficacy, pharmacology,

gating, and pore properties (Jackson and Nicoll, 2011). Experi-

ments using domain swapping between subtypes have identi-

fied TARP regions that are involved in regulating AMPARs. These

include the extracellular loop (Ex1), the transmembrane sector,

and the C terminus. Specifically, the TARP C tail appears critical

for receptor trafficking andmediation of kinetic effects, while Ex1

influences both the efficacy of the partial agonist kainate and

AMPAR kinetics (Tomita et al., 2005; Turetsky et al., 2005).

Themost distal AMPAR domain, the N-terminal domain (NTD),

is expected to be beyond the ‘‘reach’’ of the associated TARP.

Apart from a role in subunit assembly, no clear function has

been ascribed to this large and most sequence-diverse domain

(Hansen et al., 2010; Kumar and Mayer, 2013), although deletion

of theNTD slows desensitization kinetics (Bedoukian et al., 2006;

Möykkynen et al., 2014; Pasternack et al., 2002). In stark

contrast, the NTD of the N-methyl-D-aspartate (NMDA)-type

glutamate receptor (NMDAR) mediates allosteric regulation of

channel open probability (Paoletti, 2011) in a subunit-specific

manner, rendering the NTD an important target for selective

NMDAR drugs (Mony et al., 2009). NTD-mediated allostery in

NMDARs has been shown to involve the �16-residue peptide

linkers that connect the NTD to the LBD (Gielen et al., 2009;

Mony et al., 2011; Yuan et al., 2009).

Here we show that the AMPAR NTD plays a previously unrec-

ognized role in signaling. Shortening of the NTD-LBD linkers

altered desensitization rates and recovery from the desensitized

state and increased the steady-state response. These gating

effects were TARP dependent and TARP specific. Using peptide
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arrays,wemapped theGluA2/TARPcontact regionand identified

TARPbinding sites on theNTD. On the LBD, TARPcontact points

mapped to functionally critical sites, including the ligand binding

cleft, the flip/flop region, and the linkers that connect the LBD to

the ion channel. We also determined the sites on the TARP that

are contacted by the AMPAR and assessed their functional role

using corresponding TARPmutants. Our results provide detailed

insights into the molecular interactions of TARPs with AMPARs

and show that these include the distal NTD. This subunit-specific

TARP regulatory site may permit fine tuning of AMPAR signaling

and provide a target for subunit-selective drugs.

RESULTS

The NTD-LBD Linker Mediates TARP-Dependent
Changes of AMPAR Gating
The iGluR extracellular region comprises two layers (Sobolevsky

et al., 2009; Suzuki et al., 2014), a unique architecture not

observed in other ligand-gated channels. In AMPARs, the func-

tion of the distal NTD layer is unknown. This layer is loosely

connected to the LBD via �17 residue N-glycosylated linkers

(Figure 1A). As these linkers may function as potential ‘‘output’’

regions for NTD-mediated allostery, we created linker mutations

Figure 1. The NTD-LBD Linker Influences TARP-Dependent Changes in AMPAR Gating

(A) Structure of the extracellular region of a GluA2 subunit, showing the NTD (gray), linker (blue), and LBD (yellow) (adapted fromPDB: 3KG2). Sequence alignment

of the rat GluA1-4 NTD linkers, red residues have been mutated in D link with VTxxxLPSG deleted and the two asparagines (N385 and N392 bold, underlined)

mutated to Asp and Gln, respectively (analogous to PDB 3KG2). Model of a complete, stretched NTD linker is shown beneath the alignment.

(B) Representative normalized current responses evoked by 100 ms glutamate application (gray bars). Outside-out patches were pulled from cells transfected

with GluA2iQWT orD link in the absence or presence of g-2 and the decay of the current (�60mV) analyzed to determine the time constant of desensitization and

the magnitude of the steady state component. (Inset) Pooled data (mean ± SEM) showing the difference in charge transfer (normalized to the peak) during the

100 ms glutamate application (***p < 0.001, Welch t test).

(C) Pooled data showing the desensitization time constants for GluA2iQWTorD link expressed alone (n = 14 and 10), or with TARPs g-2 (n = 11 and 15), g-3 (n = 14

and 10), g-4 (n = 12 and 17), or g-8 (n = 20 and 15). Currents were fitted with a two-exponential function. The weighted time constant (tw,des) is shown ±SEM. Two-

way ANOVA indicated a significantmain effect of TARP (F4, 111 = 82.28, p = 2.663 10�32), no significantmain effect of linkermutation (F1, 111 = 1.73, p = 0.19) and a

significant interaction between linker and TARP effects (F4, 111 = 10.05, p = 5.61 3 10�7). Asterisks denote significance of difference between WT and D link for

each TARP condition (*p < 0.05, **p < 0.01, ***p < 0.001; Welch t test).

(D) Pooled data showing the ratio of current at the end of the 100 ms glutamate application (steady-state [SS]) to the peak response. The data are plotted and

analyzed as in (C), for GluA2iQWT or D link expressed alone (n = 10 each), or with g-2 (n = 11 and 8), g-3 (n = 14 and 9), g-4 (n = 12 and 17), or g-8 (n = 10 and 15).

There were significant main effects of TARP subtype (F4, 106 = 42.74, p = 2.643 10�21) and linker mutation (F1, 106 = 5.04, p = 0.027) and a significant interaction

between linker and TARP effects (F4, 106 = 8.89, p = 3.16 3 10�6). Asterisks are as in (C).
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and assayed their effect on AMPAR function. Initially, we recre-

ated the modifications that had been used in the GluA2 crystal

structure, GluA2cryst (Sobolevsky et al., 2009), as this provided

direct structural information on the packing between NTD and

LBD. Thus, we deleted six residues plus two N-glycosylation

sites in GluA2(Q607) flip, resulting in the GluA2i linker mutation,

D link (sequence in red; Figure 1A).

While the linker mutation produced no change in channel ki-

netics in the absence of TARP g-2 (Figure 1B, left), in the

presence of g-2, the mutant exhibited a pronounced slowing

of entry into the desensitized state (tw des 11.10 ± 0.82 ms for

GluA2i wild-type [WT] versus 18.56 ± 0.92 ms for D link; n =

11 and 15, respectively) and an �3-fold increase in the

steady-state current (Figures 1B–1D). These changes resulted

in a more than 2-fold increase in normalized charge transfer of

TARPed D link (inset in Figure 1B). Deactivation of the TARPed

receptor was unaltered by the linker mutation (tw, deac 1.07 ±

0.10 ms for GluA2i WT versus 1.09 ± 0.16 ms for D link; n =

15 and 10, respectively).

To determine if this behavior was specific to g-2, wemeasured

desensitization kinetics of D link when associated with other

TARPs. With g-3, the effects of the linker mutation were similar

to those seen with g-2. However, in the presence of g-8, the

linker mutation neither slowed desensitization nor increased

the steady-state component (Figures 1C and 1D). These data

reveal that an alteration in the AMPAR NTD-LBD linker affects

channel gating in a TARP-dependent and TARP-selective

manner.

The NTD-LBD Linker Modulates Recovery from
Desensitization
We next investigated whether the NTD linker has a wider role in

AMPAR function and could affect other aspects of gating that are

regulated by TARPs. TARPs are also known to accelerate recov-

ery from desensitization for GluA1 receptors (Gill et al., 2012;

Priel et al., 2005); our experiments showed that the influence of

TARPs on recovery from desensitization depended both on the

AMPAR subtype and the TARP isoform. Thus, in contrast with

GluA1, recovery from desensitization of GluA2i was unaffected

by the presence of g-2 or g-3 (type 1a TARPs) and was in fact

markedly slowed by g-4 and g-8 (type 1b) (Figure 2 and Fig-

ure S1A available online). A similar pattern was also observed

with GluA3i (Figure S1B), suggesting that accelerated recovery

is specific to GluA1.

The D link mutation resulted in an acceleration of GluA2i re-

covery fromdesensitization. This effect was again TARP subtype

specific and was observed with g-2 and g-8, but not with g-3 or

g-4 (Figure 2). Accelerated recovery together with reduced

desensitization (Figures 1B and 1C) is expected to boost charge

transfer through TARPed D link. Thus, changes in the NTD-LBD

linker have a wider role in AMPAR gating that is TARP

dependent.

Specific Features of theNTD-LBDLinkerMediateGating
Effects
We next pinpointed the minimal regions of the linker able to

mediate gating effects. We focused on the core deletion, LPSG,

Figure 2. The D Link Mutation Accelerates

Recovery from Desensitization in the Pres-

ence of TARPs

(A) Representative traces illustrating recovery from

desensitization (averages of three trials in each

case). A 100 ms pulse of 10 mM L-glutamate was

followed, at increasing intervals, by a 10 ms test

pulse, and the recovery in the amplitude of the test

response was fitted by a monoexponential func-

tion (dashed lines). Currents were normalized to

the first peak, and for clarity, only selected traces

are shown.

(B) Summary of the data presented in (A). Relative

currents at individual time points are shown ±SEM

(error bars masked by the symbols). The solid lines

are monoexponential fits of the average values

(giving time constants of 7.3, 21.8, and 75.6 ms for

GluA2 D link + g-2, GluA2 WT + g-2, and GluA2

WT + g-8, respectively).

(C) Pooled data for the time constant of recovery

from desensitization (trec) for GluA2iQ WT and D

link expressed alone (n = 11 and 8, respectively) or

with TARPs g-2 (n = 17 and 9), g-3 (n = 6 and 5), g-4

(n = 8 each), or g-8 (n = 7 and 8) (shown ± SEM).

Two-way ANOVA showed significant main effects

of TARP subtype (F4, 77 = 62.61, p = 1.913 10�23)

and linker mutation (F1, 77 = 25.58, p = 4.143 10�6)

and a significant interaction between linker and

TARP effects (F4, 77 = 3.14, p = 0.019). Asterisks

denote significance of difference betweenWT and

D link for each TARP condition (*p < 0.05, ***p <

0.001; Welch t test).

See also Figure S1.
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and on two mutations (N385D and N392Q) that abolish

N-glycosylation (Figure 3A) and thus may alter linker flexibility.

Deletion of LPSG slowed GluA2i/g-2 desensitization to a similar

extent to that seen with the complete modification (D link) (Fig-

ure 3B). This phenotype was enhanced when combined with

the glyco double null mutant (LPSG-N385D/N392Q), whereas

mutation of the two glycosylation sites alone had no significant

impact (Figure 3B). A similar trend was observed for the steady-

state response except that N385D and N392Q alone also pro-

duced significant effects (Figure 3C). Hence, the four-residue

linker deletion ‘‘LPSG’’ is necessary and sufficient to confer

the alterations in gating seen with the D link mutant. As linkers

have been suggested to encode structural states (Ma et al.,

2011), our observation raised the question of whether these

effects on gating were merely due to linker shortening or if

they resulted from specific structural effects. To address this,

we introduced an alternative four-residue deletion SGLE

(S388-E391) further downstream (Figure 3A). Unlike DLPSG, the

SGLE deletion did not slow GluA2i/g-2 desensitization and

did not increase the steady state current (Figures 3B and 3C),

indicating that structural changes, rather than linker shortening

alone, are important in mediating TARP-dependent alterations

in GluA2i gating.

To extend this finding, we introduced a deletion into the linker

of GluA3i, at a position analogous to DLPSG in GluA2i (Fig-

ure S2A). This deletion (DQISS) also slowed desensitization in

the presence of g-2, and its effect wasmagnifiedwhen combined

with the glyco null mutation N387D (QISS-N387D; Figure S2B).

However, as observed with GluA2i, a four-residue deletion

introduced further downstream, DSSSE (analogous to GluA2i

DSGLE), had no significant effect (Figure S2B). Hence, NTD-

LBD linkers have a general role in the control of AMPAR gating.

Figure 3. Gating Changes Are Mediated by

Specific Structural Features of the NTD

Linker

(A) Sequence of the GluA2 NTD-LBD linker with

the glycosylation sites and the amino acid qua-

druplets deleted in these experiments highlighted

in red and blue.

(B) Pooled data (mean ± SEM) showing the effects

on desensitization (tw,des) of NTD-LBD linker mu-

tations in GluA2i in presence of g-2. LPSG denotes

a construct with these four amino acids deleted;

LPSG-D combines this with the N385D mutation,

and LPSG-D-Q additionally includes N392Q.

Following one-way ANOVA (F7, 25.7 = 14.69, p =

1.52 3 10�7), pairwise comparisons showed that

tw,des was slower for LPSG (n = 11), LPSG-D

(n = 6), LPSG-D-Q (n = 16), and D link (n = 7)

compared with WT (n = 11) (**p < 0.01, ***p <

0.001) and was significantly slower for LPSG-D-Q

compared with LPSG (#p < 0.05) (Welch t tests).

There was no significant effect of the glycosylation

mutations N385D (n = 8) or N392Q (n = 10) and

no effect of the alternative deletion mutant,

SGLE (n = 8).

(C) Pooled data for the steady state-to-peak ratio

(SS/peak; presented and analyzed as in B).

Following one-way ANOVA (F7, 26.5 = 17.18, p =

2.34 3 10�8), pairwise comparisons showed that

the SS/peak ratio was greater for N385D (n = 8),

N392Q (n = 10), LPSG (n = 11), LPSG-D (n = 7),

LPSG-D-Q (n = 16), and D link (n = 7) compared

with WT (n = 9) (**p < 0.01, ***p < 0.001) and

significantly greater for LPSG-D-Q compared to

LPSG (#p < 0.05) (Welch t tests). Again, no effect of

the alternative deletion mutant, SGLE (n = 8).

(D) Pooled data (± SEM) comparing the effects of

the LPSG-D mutation in GluA2 and in a chimeric

construct where the NTD of GluA2 was replaced

by that of GluA3. (Left) tw,des was increased

by LPSG-D in both GluA2 (n = 10 and 6) and

GluA2A3-NTD (n = 14 and 7) (***p < 0.001 and *p <

0.05; Welch t tests). Two-way ANOVA showed

a significant interaction between NTD and linker

(F1, 33 = 11.62, p = 0.0017). Similar results were seen for the SS/peak ratio (right); in this case, the ratio was increased by LPSG-D in GluA2 (***p < 0.001) but not in

GluA2A3-NTD. Again, two-way ANOVA showed a significant interaction between NTD and linker (F1, 33 = 13.10, p = 9.75 3 10�4), confirming that the effect of the

LPSG-D linker mutation was NTD-type specific.

See also Figure S2.
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TARP-Dependent Reorientation of the NTD via the
Linkers
How do NTD linker deletions affect gating of the AMPAR-

TARP complex? While deletion of the NTD is known to alter

desensitization kinetics (Bedoukian et al., 2006; Möykkynen

et al., 2014; Pasternack et al., 2002), this domain has not been

implicated in TARP modulation to date. In fact, previous work

has questioned a role for the NTD in TARP function (Bedoukian

et al., 2006; Morimoto-Tomita et al., 2009; Tomita et al., 2007).

Similarly, in our hands, the gating properties of AMPARs lacking

the NTD (GluA2i-DNTD), including desensitization kinetics and

kainate efficacy, retained modulation by g-2 (Figures S2C–

S2E). However, these observations do not rule out a functional

role for the NTD, which may trigger a TARP-dependent reorgani-

zation of the receptor (Figure S6B).

The position dependence of the deletions described in Figures

3A–3C suggests that the linker might facilitate a ‘‘preferred’’

orientation of the NTD relative to the LBD, perhaps to optimize

TARP binding and thereby enable the TARP-dependent slowing

of desensitization (Figure 1). As the NTD is highly sequence

diverse, with a sequence identity of �55% between AMPAR

subunits, we replaced the NTD core (lacking the linker) from

GluA2i WT and GluA2i DLPSG-D with that of GluA3 (Figure 3D,

bottom). We reasoned that if a selective positioning of NTD to

LBD created an optimal TARP binding site, then this replacement

would markedly alter this interaction surface. When GluA2i re-

ceptors contained the GluA3 NTD, the effects of the DLPSG-D

mutation on desensitization and steady-state response were

attenuated drastically (Figure 3D). This is consistent with the

view that a specific orientation of the NTD-LBD may allow an

optimal TARP interaction site and hence greater TARP efficacy.

The NTD Stabilizes the AMPAR-TARP g-2 Complex
To establish whether the NTD directly mediates interaction with

TARPs, we first used immunoprecipitation (IP) to test if the NTD

contributes to stabilizing the AMPAR-TARP complex. We trans-

fected either GluA2i WT or GluA2i-DNTD into HEK293T cells

stably expressing TARP g-2, extracted proteins under mild

detergent conditions (Nakagawa et al., 2006) and IPed GluA2i/

g-2 complexes with an anti-g-2 antibody. As shown in Figure 4A,

the fraction of GluA2i-DNTD associating with g-2 was markedly

reduced (lanes 3 + 4) when compared with GluA2i WT (lanes

1 + 2). The ratio of IPed GluA2i WT to GluA2i-DNTD was

�3-fold (2.9 ± 0.5; n = 5), when normalized to the input. TARP

expression between conditions was comparable (Figure 4A,

lower panel), and a similar association pattern was evident

in the reverse experiment, where g-2 was IPed with GluA2 (Fig-

ure S3A). Conversely, IP of GluA2i D link with g-2 was similar to

GluA2i WT (Figure S3B) and was not enhanced as one may have

expected from the functional data (Figure 1).

Reduced association with g-2 in absence of the AMPAR NTD

was also observed for GluA1 (data not shown) and for other

GluA2 isoforms, namely uneditedGluA2i-Q607 and for thealterna-

tively spliced GluA2-flop variety (GluA2o-R607). While there was

no obvious difference in TARP association between the WT iso-

forms, we noted an isoform-specific difference between the

DNTD mutants (Figure 4A, lanes 3–8). Specifically, the Q to R

switch at the channel pore reduced coIP by �2-fold (2.2 ± 0.6,

n = 5; lanes 4 versus 6) and the flop D-NTD mutant precipitated

�3-fold (2.9 ± 0.3, n = 5) less efficiently than its flip counterpart

(lanes 4 versus 8). These results imply that the NTD contributes

to complex stability and that there are multiple regions on the

AMPAR that mediate association with TARP auxiliary subunits.

Delineating the TARP g-2 Interaction Regions on GluA2
Thus far, our data suggested a reorganization of AMPARs when

associating with TARPs. This prompted us to identify TARP bind-

ing sites on the receptor, which are currently unknown. We uti-

lized peptide arrays, which provide semiquantitative maps of

protein interaction regions (Katz et al., 2011; Shanks et al.,

2014). We first probed an array of overlapping 15 amino acid

peptides representing GluA2with TARP g-2 (Table S1). The array

covered the NTD lower lobe, the NTD-LBD linker, the LBD and

the transmembrane sector (schematic in Figure 4B). TARP g-2

binding was revealed with an anti-g-2 antibody (Supplemental

Experimental Procedures).

As shown in Figures 4C, 4D, and S4, TARP interaction sites

mapped to the LBD, the transmembrane region and indeed

included theNTD. Interestingly, the NTD linker regionwas devoid

of g-2 binding. Even GluA2 peptides mimicking glycosylation

(with GlcNAc-b[1-4]-GlcNAc) at the two N-glycosylation sites,

N385 and N392, were negative (data not shown), suggesting

that the linker is not directly contacted by the TARP but facilitates

a specific orientation of the NTD (which is altered in D link). A

similar pattern was observed with GluA3 where the NTD core

that precedes the linker interacted with g-2, whereas the

linker itself was mostly devoid of signal (Figure S4A). Below we

give a more detailed description of the g-2 contact points

on GluA2.

Regions of the NTD that Interact with g-2

TARP contact regionsmapped to various points on the NTD (Fig-

ures 4C, 4D, and S4). These included the front helices F and H,

which have previously been implicated in NTD dynamics; they

exhibit structural heterogeneity (Sukumaran et al., 2011) and un-

dergo fluctuations when measured at a single-molecule level

(Jensen et al., 2011) and in molecular dynamics simulations

(Dutta et al., 2012). Of note, these helices also form an interface

between NTD dimers (Jin et al., 2009; Sobolevsky et al., 2009),

which may be disrupted by TARP association in the AMPAR

tetramer (orange region in Figure S4B). Interaction sites also

mapped to the side (close to helix H), the back of the NTD (along

helix D), and across the NTD ‘‘floor’’ (Figures 4D, S4B, and S4C).

Regions of Interaction on the GluA2 LBD and the

Transmembrane Sector

The LBD has been suggested as a key TARP modulatory target

(Kato et al., 2010; Tomita et al., 2006, 2007). Our identification of

TARP contact points on strategic regulatory sites on the LBD

offers an explanation for these observations. These included

the upper and lower ‘‘lip’’ of the LBD clamshell (regions A1, A2

in Figures 4C and 4D), the LBD-TMD linker region (region B),

and the alternatively spliced flip/flop cassette (region C; Figures

4D and S4D) (Sommer et al., 1990).

TARP interaction with regions A and B suggests how TARP

binding could modulate AMPAR gating kinetics and agonist

efficacy. Region A stretches across both lobes of the LBD clam-

shell, extending from beta strand 2 in the upper lobe down to
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helix H in the lower lobe (Figures 4D and S4D) and is thus ideally

positioned to affect LBD clamshell motions associated with

gating. Region B encompasses LBD-TMD linkers, which trans-

late LBD motions into channel opening. Strong signals were

apparent in the LBD-TM1 linker but not in LBD-TM4. The TM3

linker, which connects the LBD to the channel gate, is positioned

in the ‘‘interior’’ of GluA2 (Sobolevsky et al., 2009) and may be

less accessible. The transmembrane sector, which exhibits

Figure 4. Mapping the TARP g-2 Contact Region on GluA2

(A) coIP of GluA2 variants with TARP g-2. The blot was probed with polyclonal GluA2 antibody (top panel) and anti g-2 (bottom panel). Both WT and DNTD

protein migrated as monomer (M) and dimer (D), denoted by arrowheads. Note that while inputs were comparable, amounts of IPed GluA2 varied between

conditions.

(B) Schematic of the peptide array layout (right). Each peptide is spotted onto a nitrocellulose membrane (C). Peptide coverage of the rat GluA2 sequence is

outlined in the left panel in color code as indicated. The four GluA2 regions—the NTD lower lobe, the NTD-LBD linkers, the LBD, and the TM segments of the

channel—are highlighted. GluA2 peptide numbers covering each domain are indicated in brackets.

See Table S1 for peptide sequences.

(C) Regions of GluA2 binding to TARP g-2. (Upper panel) Nonspecific signal, resulting from anti-g-2 antibody binding to GluA2 in the absence of the g-2 probe

(‘‘AB control’’). AMPAR domains are highlighted in boxes and match the color scheme in (B). Peptide numbers are indicated on the side. The membrane was

exposed to an X-ray film for 2 min; the arrow denotes nonspecific signals. (Lower panel) The samemembrane was probed with full-length TARP g-2 and detected

with anti-g-2 AB followed by a HRP-labeled secondary AB (2 min exposure). Individual AMPAR secondary structure elements, corresponding to NTD and LBD

helices, are highlighted in stippled boxes on the blot (compared with D). The bottom panel shows a longer exposure for the LBD-A1 region (yellow) and the NTD-

LBD linker (blue).

See Figure S4A for a longer exposure of the blot.

(D) TARP binding sites deduced from the peptide array in (C) are mapped onto the extracellular region of GluA2 (PDB: 3KG2). NTD interaction sites are denoted in

deep red (strong interaction) and light pink (weaker interaction; see graded bar below), with alpha helices contacted by g-2 denoted by (D), (F), and (H). LBD

interaction sites are highlighted in brown (strong interaction) and yellow (weaker interaction). The three core contact regions, A–C, are denoted. Region A spans

the glutamate binding cleft (interaction sites A1 and A2); region B encompasses the LBD-TM linker 1, and region C corresponds to the flip-flop cassette (denoted

with a stippled ellipsoid).

See also Figures S3, S4, and S6 and Table S1.

Cell Reports 9, 728–740, October 23, 2014 ª2014 The Authors 733



prominent swelling in TARP-associated AMPARs (Nakagawa

et al., 2005), also showed signs of interaction. However, this re-

gion also exhibited nonspecific antibody binding, so we cannot

make any specific assignment at present (Figure 4C). Similarly,

strong background signals were observed along LBD helices

F and G.

Region C encompasses the flip/flop cassette (helices J and K),

which also contributed to complex stability in our coIP experi-

ments (Figure 4A). These contacts likely account for the flip/

flop differences in TARP modulation (Kott et al., 2007; Turetsky

et al., 2005) and the altered specificity of AMPAR modulators

in the presence of TARPs (Tomita et al., 2006). As is apparent

in Figure 4D, this region follows a continuous path toward the

interaction patch on the back of the NTD (NTD helix D; Figure 4D,

right), which might tether the LBD to the NTD via the TARP.

Taken together, these results provide a glimpse into the g-2 con-

tact points and reveal the functionally critical regions of the

AMPAR interacting with g-2.

Delineating GluA2 Binding Sites on TARPs g-2 and g-8
Next, we used an array of TARP peptides to identify TARP res-

idues that contact the AMPAR (Table S2). We examined loops

Ex1 and Ex2 (Figure 5A) in both type 1a (g-2) and type 1b (g-8)

TARPs and mapped sites contacted by the NTD and LBD.

Extensive contacts were indeed apparent on both g-2 and

g-8 when we probed the array with the NTD (Figure 5B, lower

panel). Only background signals were obtained when we

omitted the NTD and tested the membrane with the antibody

alone (upper panel). In addition to identifying NTD binding

sites on Ex1, we also detected signals on the smaller Ex2

loop, which is only �30 residues in length and thus not ex-

pected to protrude far above the plane of the plasma mem-

brane. Moreover, in Ex1, the membrane-proximal N and C

termini exhibited regions of NTD interaction. In vivo, these

interactions would require substantial reconfigurations of the

receptor, with the NTD reaching down toward the membrane

(Figure S6B); NTD reconfigurations have been observed in

Figure 5. Mapping TARP g-2 and TARP g-8 Residues Involved in AMPAR Interaction

(A) Alignment of rat type 1a (g-2, g-3) and type 1b (g-4, g-8) TARP extracellular loops, Ex1 and Ex2. Conserved residues are shaded brown, and residues highly

conserved throughout the Cacng family (g-1 to g-8) are boxed in gray. The four cysteines are highlighted in yellow. Curly brackets above the g-2 (green) and below

g-8 alignment (blue) indicate regions in the center of Ex1 interacting with the AMPAR extracellular domains (NTD and LBD).

(B) TARP array encompassing the Ex1 and Ex2 segments of g-2 (green box) and g-8 (blue box) probed with the NTD. (Upper panel) Nonspecific signal, resulting

from direct anti-GluA2 antibody binding to themembrane (AB control). The Ex1 and Ex2 regions for both TARPs are denoted (dashed line). (Lower panel) the same

membrane was exposed to the rat GluA2 NTD followed by probing with anti-GluA2 AB. The membrane exposure time is as indicated.

See Table S2 for peptide sequences.

(C) g-2 and g-8 arrays probed with GluA2 LBD and GluK2 LBD. The negative controls with anti-FLAG AB did not show any signal and thus are not shown.

Membranes were then incubated with FLAG-tagged GluA2 LBD or GluK2 LBD and probed with anti-FLAG AB. (Upper panel) GluA2 LBD interaction with g-2

(same peptides as in Figure 5B, green box). (Central panel) GluA2 LBD interaction with g-8 (same peptides as in B, blue box). (Lower panel) the g-2 membrane

previously probed with GluA2 LBD (top panel) was regenerated and probed with the FLAG-tagged GluK2 LBD, which produced no clear binding. Regeneration of

this membrane resulted in a clear binding pattern when reprobed with the GluA2 LBD that matched the one shown in (C, top).

(D) Schematic representation of TARP structure with the GluA2 NTD and LBD interacting parts of the Ex1 and Ex2 loops highlighted in orange and the highly

conserved GLWR motif indicated.
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low-resolution structures of native AMPARs (Nakagawa et al.,

2005). A prominent interaction region was also present in the

center of Ex1, surrounding the highly conserved GLWRxC67

motif present throughout the vertebrate Cacng family (g-1 to

g-8) (Figures 5A, 5B, and 5D).

The same peptides were also probed with a Flag-tagged

GluA2 LBD. Surprisingly, the LBD interaction sites on the TARPs

g-2 and g-8 largely overlapped with those for the NTD. There

were two noticeable differences: (1) the relative weight of signals

across the Ex1 tip region, surrounding the double cysteine motif,

varied between the LBD andNTD and (2) within Ex1, LBD binding

to the N-terminal end of the loop was greater, whereas interac-

tion with the tip region of the loop was reduced (Figure 5C).

This indicates that the LBD interacts strongly with themembrane

proximal region of Ex1, whereas the NTD binds more intimately

to the Ex1 segment that surrounds the double cysteine motif

(CC67, CC68).

The similarity between the NTD and LBD binding pattern

prompted us to probe the specificity of this interaction further.

As the related kainate receptors do not interact with TARPs

(Chen et al., 2003), we probed the g-2 array with a Flag-tagged

GluK2 LBD (the GluA2 and GluK2 LBDs share only �50%

sequence identity) and did not observe clear binding (Figure 5C,

bottom panel), suggesting that the observed AMPAR/g-2 inter-

action profile is genuine. Together, these results corroborate

an interaction of the NTD with type 1a and type 1b TARPs and

reveal the sites on the TARPs involved in modulating AMPARs.

Interaction Regions in the g-2 Ex1 Loop Are Critical for
TARP Function
To test the functional relevance of the identified binding region

(Figure 5D), we mutated the g-2 Ex1 segment contacting the

AMPAR and examined the effects on GluA2i currents. As shown

in Figure 6A (top), triple and quadruple mutations were intro-

duced into the tip region of Ex1. We tested the ability of TARP

mutants tomodulate channel kinetics, kainate efficacy (Figure 6),

inward rectification, and channel conductance (Figure S5) (Jack-

son et al., 2011; Soto et al., 2007). We found that although all

three g-2 mutants retained some TARP-like functions, various

channel parameters were affected differently and to varying de-

grees. For example, with the KGL74–76 mutation, desensitization

was faster thanwith g-2WT (Figure 6A), whereas kainate efficacy

was unchanged relative to g-2 WT (Figure 6D). On the other

hand, GluA2i coexpressed with KQID78–81 exhibited significantly

lower kainate efficacy than did receptors expressedwith g-2WT,

while desensitization kinetics were comparable. The reduced

kainate efficacy seen with KQID78–81 and WRT64–66 when

compared with g-2 WT suggests that these mutants disrupt

TARP-AMPAR interactions in a way that might affect the degree

of the LBD cleft closure, as this is known to determine the effi-

cacy of partial agonists (Jin et al., 2003).

All g-2 Ex1 mutants increased the weighted-mean channel

conductance of GluA2i to the same extent as g-2 WT (Fig-

ure S5). By contrast, the WRT64–66 mutant produced less relief

of polyamine block than did g-2 WT (Figure S5), where the

effect of the mutation was evident only at positive potentials

(data not shown). These observations suggest that regions of

the TARP distinct from Ex1, such as TM2 may play a role in

modulating AMPAR properties, particularly those related to

ion permeation, which likely result from interactions close to

the channel pore.

Among the Ex1 mutants examined here, the WRT64–66 muta-

tion had the most profound impact on a variety of functional

properties (Figures 6 and S5). WRT64–66 was expressed at lower

levels (�50%) than g-2WT; however, thismutant was targeted to

the cell surface and biotinylation experiments revealed that the

proportion of surface-expressed versus internal WRT64–66 was

comparable to the other g-2 mutants (data not shown). In sum-

mary, our results identify functional hotspots in the g-2 Ex1

loop and imply the existence of regions on the TARP that selec-

tively influence different aspects of the AMPAR gating spectrum.

DISCUSSION

In this study, we report a role for the NTD (and the NTD-LBD

linker) in AMPAR modulation by TARPs. We show that the NTD

has the capacity to interact with TARPs and that selective short-

ening of the NTD linker can potentiate the modulatory function of

TARPs in a TARP-selective fashion. Using peptide arrays, we

identify NTD and LBD segments contacting g-2 (Figure S6A),

shedding light on the mechanisms underlying TARP modulation.

In addition, we characterize contact points of the NTD and LBD

on TARPs g-2 and g-8 and identify functional hotspots in the g-2

interaction region. Our results imply that AMPARs are highly

dynamic and may substantially reconfigure when interacting

with auxiliary subunits (Figure S6B). We hypothesize that the

flexible, modular organization of the AMPAR extracellular region

permits selective interaction with other synaptic components,

which may impact allosteric regulation of AMPARs.

The AMPAR Extracellular Region Is Flexible
The extracellular region of AMPA (and kainate) receptors consti-

tutes �80% of the mass of the receptor. The LBD layer is

wedged between the ion channel and the NTD and is connected

to both domains via peptide linkers. This flexible attachment,

together with weak contacts within the LBD layer, is intimately

linked to receptor gating, which requires substantial reconfigura-

tions. In addition to the well-studied intradimer rearrangements

associated with AMPAR desensitization (Armstrong et al.,

2006; Sun et al., 2002), recent data fromGluK2 kainate receptors

reveal complete separation of the four LBDs upon desensitiza-

tion (Schauder et al., 2013). This loose architecture permits large

rearrangements that are required for AMPAR gating on the milli-

second time scale (Plested and Mayer, 2009).

Subunit interactions within the distal NTD layer are substan-

tially tighter as NTD dimers exhibit low nanomolar to low micro-

molar affinities (Herguedas et al., 2013; Rossmann et al., 2011;

Zhao et al., 2012). These dimers associate as tetramers through

a relatively small interface (Clayton et al., 2009; Jin et al., 2009;

Kumar et al., 2009; Sobolevsky et al., 2009), which appears to

be contacted by TARPs (Figure S4B). TARP association could

therefore impact the organization of the distal layer, perhaps in

a state-dependent fashion. Our peptide array data also imply

that interdomain interactions between the NTD and LBD are

altered by TARPs, which may underlie changes in desensitiza-

tion rates observed in response to linker truncation.

Cell Reports 9, 728–740, October 23, 2014 ª2014 The Authors 735



As TARPs are not expected to protrude far beyond the plane of

the membrane (Suzuki et al., 2014), a direct contact between

TARPs and the NTD would require substantial rearrangements

of the receptor. Structural data lend some support to this hypoth-

esis (Nakagawa et al., 2005). Since interactions within a mem-

brane-embedded receptor complex likely differ from those in a

peptide array probed with isolated (and therefore unconstrained)

receptor domains, not all interactions described here may occur

at the same time and may also depend on the functional state of

the receptor. Related to this, TARP contacts may differ between

the two nonequvivalent AMPAR subunits pairs (AC vs. BD;

Sobolevsky et al., 2009).

TARPs Interact with Functionally Critical AMPAR
Regions
Within the LBD, TARP contacts include a number of sites of

functional importance. Interactions across the LBD cleft are

well suited to affect kainate efficacy, the pharmacology of

Figure 6. Effects of Ex1 Mutations in

TARP g-2

(A) Sequence of the g-2 Ex1 region surrounding

the highly conserved GLWRxC67 motif. Boxed

regions in red identify the amino acid triplets and

quadruplet mutated in these experiments.

(B) Pooled data (mean ± SEM) showing the effects

of Ex1 mutations in g-2 on desensitization (tw,des)

of GluA2. Following one-way ANOVA (F4, 23.27 =

28.89, p = 1.01 3 10�8), pairwise comparisons

showed that g-2 WT (n = 12) and all three g-2

mutants (KGL74–76, KQID78–81, and WRT64–66; n =

12, 8, and 14, respectively) slowed tw,des

compared with GluA2 alone (n = 10) (***p < 0.001)

and that the effects of KGL74–76 and WRT64–66
were less than those of g-2 WT (#p < 0.05, ###p <

0.001) (Welch t tests). To the right are represen-

tative currents evoked by 10 mM L-glutamate

(�60 mV) in patches from cells expressing GluA2/

g-2 WT and GluA2/g-2 WRT64–66. Also shown are

the individual tw,des values determined from dou-

ble exponential fits (blue).

(C) Pooled data showing the effects ofmutations in

g-2 on the steady-state/peak ratio (SS/peak).

Presentation, analysis, and n numbers as in B

(F4, 22.91 = 18.26, p = 7.27 3 10�7; **p < 0.01 and

***p < 0.001 compared with GluA2 alone and
###p < 0.001 compared with g-2 WT). To the right

are representative records from GluA2/g-2 WT

and GluA2/g-2 WRT64–66 illustrating the current

remaining at the end of the 100 ms applications of

L-glutamate (10 mM) and the calculated SS/peak

ratio.

(D) Pooled data (±SEM) showing the effects of

mutations in g-2 on GluA2 deactivation (tw,deact;

1 ms, 10 mM L-glutamate, �60 mV). Following

one-way ANOVA (F4, 17.47 = 3.06, p = 0.044),

pairwise comparisons showed that only for g-2

WT (n = 8) was t w,deact slowed compared with

GluA2 alone (n = 8) (*p < 0.05). None of themutants

(KGL74–76, KQID78–81, andWRT64–66; n = 11, 8, and

7, respectively) differed from GluA2 alone or

GluA2/g-2 WT. To the right are representative

currents in patches taken from cells expressing

GluA2/g-2 WT and GluA2/g-2 WRT64–66. Also

shown are the individual tw,deact values deter-

mined from double exponential fits (blue).

(E) Pooled data (± SEM) showing the effects of

mutations in g-2 on the KA/Glu ratio. Following

one-way ANOVA (F4, 9.85 = 44.8, p = 2.72 3 10�6),

pairwise comparisons showed that g-2 WT (n = 5) and all three g-2 mutants (KGL74–76, KQID78–81, and WRT64–66; n = 7, 5, and 8, respectively) increased kainate

efficacy (KA/Glu ratio) comparedwith that seen with GluA2 alone (n = 4) (*p < 0.05, ***p < 0.001) and that KQID78–81 andWRT64–66 had less effect than g-2WT (#p <

0.05, ###p < 0.001) (Welch t tests). To the right are representative currents evoked by L-glutamate and kainate (both 500 mM, in the presence of 100 mM

cyclothiazide) in patches from cells expressing GluA2/g-2 WT and GluA2/g-2 WRT64–66. Also shown are the KA/Glu ratios for these representative records.

See also Figure S5.
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competitive antagonists, and the open-to-closed equilibrium of

the clamshell (Cho et al., 2007; Milstein et al., 2007). Similarly,

the LBD-TM1 linkers, which are contacted by g-2, are involved

in transmitting gating motions from the LBD to the ion channel

and are thus well suited to shape gating. Curiously, TARPs con-

tact the alternatively spliced flip/flop segment, which, according

to our IP data, impacts the stability of the AMPAR/TARP com-

plex. Our coIP results imply multiple regulatory sites on the re-

ceptor, the Q/R site in the pore, and the flip/flop cassette in the

LBD, which in combination would determine AMPAR affinity for

the TARP. This result highlights the strategic role of flip/flop

splicing in AMPAR regulation (Coleman et al., 2006; Penn

et al., 2012; Sommer et al., 1990). Somewhat unexpectedly,

the GluA2i-DNTD mutant retained modulation by g-2 to compa-

rable levels as GluA2i WT (Figures S2C–S2E). Interestingly,

earlier work showed that while GluA2i lacking the NTD was

potentiated by g-2, the GluA2o-DNTD mutant was not (Bedou-

kian et al., 2006). This may well be explained by the reduced

TARP affinity seen with the flop variety in our coIPs and further

indicates that multiple binding sites on the receptor (Figure S6A)

contribute to elicit optimal TARP modulation.

Surprisingly, on the TARP itself, the GluA2 LBD and NTD con-

tacted comparable regions in the extracellular loops; however,

the relative weights of signal intensities were distinct. This

pattern of interaction is unexpected and prevented us from

selectively mutating residues within LBD versus NTD interaction

regions. Structural data are required to resolve the precise orga-

nization of AMPAR TARP complex. Another curious feature of

our results is the close similarity between g-2 and g-8 in their in-

teractions with AMPAR. These two TARPs are of strikingly

different length and share only�48% sequence similarity in their

extracellular regions. As signals across Ex1 centered around the

four cysteines, tertiary structural features of the loop that result

from disulphide bonding (Suzuki et al., 2014) are likely to underlie

this interaction. The functional consequence of theNTD-g8 inter-

action remains to be established.

Functional Implications of TARP-Induced AMPAR
Rearrangements
Acontinuouspath of TARP interaction, extending beyond the flip/

flop region toward the back of the NTD, may permit ‘‘bridging’’

between the NTD and LBD. The resulting compact arrangement

between these two domains may ‘‘incorporate’’ the otherwise

loosely connected NTD layer into an allosteric unit with the LBD

(FigureS6B). TheAMPARrearrangement, triggeredbyTARPs, re-

flects a capacity of the AMPAR for dynamic reorganization that

might permit interactions with other synaptic components, such

as cadherins and pentraxins (Saglietti et al., 2007; Sia et al.,

2007), to impact postsynaptic response properties via the NTD.

The sequence diversity of the NTD, combined with the exis-

tence of multiple TARPs heterogeneously expressed in diverse

neuronal populations,mayprovide further capacity for differential

regulation of AMPAR subtypes. First, the NTD-TARP contact re-

giondescribed in this studymayoffer a target for thedevelopment

of novel AMPAR-subtype selective drugs (Gill and Bredt, 2011).

Second, AMPARs have been suggested to dissociate from

TARPs upon activation by L-glutamate, prior to endocytosis

(Tomita et al., 2004). Thus, AMPAR subunit combinations with

different affinities for TARPs, mediated via the sequence-diverse

NTD, couldexhibit distinct endocytosis rates and lateral diffusion,

influencing thedwell-timeofAMPARsatpostsynaptic sites (Bredt

and Nicoll, 2003; Opazo et al., 2012). Therefore, the extracellular

region of AMPARs might turn out to be a key element for regu-

lating functional and structural plasticity at excitatory synapses.

EXPERIMENTAL PROCEDURES

Additional details are provided in the Supplemental Experimental Procedures.

Protein Production

His-tagged g-2 was produced in insect cells using a P1 baculovirus stock

following a purification protocol provided by T. Nakagawa. High-titer viral

stocks were obtained following the Bac-N-Blue protocol (Invitrogen). Protein

was solubilized with decyl-maltoside and purified by Cobalt-affinity chroma-

tography. The GluA2 NTD was purified from stably transfected GntI�

HEK293S cells (Rossmann et al., 2011). A FLAG-tag was introduced at the

GluA2i LBD C terminus (R/Flip; (Armstrong and Gouaux, 2000; Greger et al.,

2006) and the GluK2 LBD (provided by M. Mayer) and cloned into a

pET22b(+) plasmid containing an N-terminal His8 tag and a thrombin cleavage

site. Proteins were produced in Origami B (DE3) cells and purified on a HisTrap

HP column followed by thrombin cleavage and gel filtration.

Peptide Arrays

The interaction betweenGluA2 and TARPs g-2 and g-8 wasmapped with pep-

tide arrays synthesized by SPOT synthesis (PepSpots from JPT Peptide

Tech.). AMPAR and TARP arrays contained 15-mer overlapping peptides

shifted by four residues (Tables S1 and S2). The GluA2 array was probed

with full-length g-2, whereas the TARP g-2 and g-8 arrays were probed with

GluA2 NTD, GluA2 LBD, or GluK2 LBD, following the manufacturer’s protocol.

Prior to exposing the arrays to specific protein probes, the membranes were

incubated with antibodies only to determine nonspecific binding. Membranes

were blocked with 5% BSA and incubated with primary antibodies: anti-FLAG

(monoclonal; Sigma-Aldrich), anti-Stargazin (polyclonal; Millipore), or anti-

GluA2 (polyclonal; Alomone). After incubation with HRP-coupled secondary

antibodies (Pierce), membranes were developed with enhanced chemilumi-

nescence and images were captured electronically with a ChemiDoc MP

Imaging System (Biorad) or on an X-ray film.

Electrophysiology

Voltage-clamp recordings of rat GluA2i (flip, R/G-edited, Q/R-unedited) or

GluA3i (flip, R/G-edited and containing the R463G point mutation for increased

surface expression; Coleman et al., 2010) were performed as described previ-

ously (Rossmann et al., 2011; Soto et al., 2007). Briefly, outside-out patches

were pulled from HEK293(T) cells transfected with rat GluA2i or GluA3i, and

current responses to rapid application of 10 mM L-glutamate via a q tube

were recorded. Where indicated, TARPs were coexpressed, either transiently

cotransfected or using a cell line stably expressing g-2 or g-8. The kinetics of

the receptor desensitization, deactivation, and recovery from desensitization

were analyzed by fitting currents with single- or double-exponential functions.

In addition, steady state-to-peak ratio, relative kainate efficacy, rectification,

and single channel properties (by nonstationary fluctuation analysis) were

assessed.

Statistics

Summary data are presented as the mean ± SEM from n patches. Compari-

sons involving two data sets only were performed using a two-sided Welch

two-sample t test. All analyses involving data from three or more groups

were performed using one- or two-way analysis of variance (Welch heterosce-

dastic F test) followed by pairwise comparisons using two-sided Welch two-

sample t tests (with Holm’s sequential Bonferroni correction for multiple

comparisons). Differences were considered significant at p < 0.05. Statistical

tests were performed using Prism 4.0/6.0 (GraphPad Software) or R (v.3.0.2,

The R Foundation for Statistical Computing, http://www.r-project.org/) and

RStudio (v.0.98.313, RStudio).
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Bildl, W., Baehrens, D., Hüber, B., Kulik, A., et al. (2012). High-resolution pro-

teomics unravel architecture and molecular diversity of native AMPA receptor

complexes. Neuron 74, 621–633.

Shanks, N.F., Savas, J.N., Maruo, T., Cais, O., Hirao, A., Oe, S., Ghosh, A.,

Noda, Y., Greger, I.H., Yates, J.R., 3rd, and Nakagawa, T. (2012). Differences

in AMPA and kainate receptor interactomes facilitate identification of AMPA

receptor auxiliary subunit GSG1L. Cell Rep 1, 590–598.

Shanks, N.F., Cais, O., Maruo, T., Savas, J.N., Zaika, E.I., Azumaya, C.M.,

Yates, J.R., 3rd, Greger, I., and Nakagawa, T. (2014). Molecular Dissection

of the Interaction between the AMPA Receptor and Cornichon Homolog-3.

J. Neurosci. 34, 12104–12120.
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Figure S1. Differential modulation of GluA2 and GluA3 recovery from 

desensitization by Type-1a and -1b TARPs, related to Figure 2. 

A. Graphical summary of recovery from desensitization of GluA2 wt expressed 

with different TARPs. Relative currents at individual time points are shown ± SEM 

(error bars masked by the symbols in most cases). The solid lines are 

monoexponential fits of the averages, giving similar time constants of 18.1 ms, 21.8 

ms and 22.2 ms for GluA2 alone (n = 11), GluA2 with γ-2 (n = 17) and GluA2 with 

γ-3 (n = 6), respectively. Much slower recovery was seen for GluA2 with γ-4 (66.5 

ms; n = 8) and GluA2 with γ-8 (75.6 ms; n = 7). 

B. Pooled data (shown ± SEM) for the time constant of recovery from 

desensitization for GluA3i (R463G) expressed alone or with TARPs γ-2 or γ-8 (n = 9, 

17 and 14, respectively) (*** P < 0.001; two-sided Welch two-sample t-tests with 

Holm’s sequential Bonferroni correction for multiple comparisons).	
  



	
  

	
  

 

Figure S2. NTD-LBD linker mutations affect desensitization of GluA3, the effect of 

γ-2 TARP on GluA2 gating is not eliminated in the absence of NTD, related to Figure 

3. 

A. Sequence alignment of the NTD-LBD linkers of GluA2 and GluA3, with the 

deleted/mutated regions highlighted (GluA2 mutants described in Figure 3). 

B.  Pooled data (± SEM) showing the effect of NTD-LBD linker mutations on 

desensitization kinetics of GluA3 in the presence of TARP γ-2. QQIS denotes 

deletion of these four amino acids, QQIS-D combines this with the N387D point 

mutation, while SSSE is an alternative four-amino acid deletion. Values were 

compared using one-way ANOVA. Pairwise comparisons showed that τw,des was 

significantly slower for QQIS (n = 7) and QQIS-D (n = 9) compared to wt (n =31) (** 

P < 0.01, *** P < 0.001) (two-sided Welch two-sample t tests with Holm’s sequential 



	
  

Bonferroni correction for multiple comparisons). There was no significant effect of 

the glycosylation mutation N394Q (n = 9) or the alternative deletion mutant, SSSE (n 

= 7). 

C.  Pooled data (± SEM) showing the effect of NTD deletion on desensitization 

kinetics of GluA2i. τw,des	
  was	
   significantly	
   increased	
  both in the absence (n = 23 

and 16 for GluA2 wt and ΔNTD, respectively) and presence (n = 29 and 25) of TARP 

γ-2 (****	
   P	
   <	
   0.0001;	
   two-­‐sided	
   Welch	
   two-­‐sample	
   t	
   test).	
   Two-­‐way	
   ANOVA	
  

showed	
  no	
  significant	
  interaction	
  between	
  NTD	
  and	
  γ-2 presence	
  (F1,	
  89	
  =	
  0.69,	
  P	
  

=	
  0.4084).	
  

D.  Pooled data for the steady state-to-peak ratio, presented and analysed as in C. 

SS/Peak	
  was	
  significantly	
  higher	
  for	
  the	
  ΔNTD	
  both in the absence (n = 21 and 16 

for GluA2 wt and ΔNTD, respectively) and presence (n = 28 and 25) of γ-2 (****	
  P	
  <	
  

0.0001;	
   Welch	
   t	
   test).	
   Here,	
   two-­‐way	
   ANOVA	
   showed	
   significant	
   interaction	
  

between	
  NTD	
  and	
  γ-2 presence	
  (F1,	
  86	
  =	
  10.41,	
  P	
  =	
  0.0018).	
  

E.  Pooled data for the kainate efficacy assay, comparing amplitude of responses 

to kainate and L-glutamate (KA/Glu	
  ratio;	
  both	
  500	
  μM,	
  in	
  the	
  presence	
  of	
  100	
  μM	
  

cyclothiazide), presented and analysed as in C. No difference between GluA2 wt and 

ΔNTD either in absence (P = 0.2064; n = 6 for both) or presence (P = 0.6105; n = 8 

for both) of γ-2. Two-­‐way	
   ANOVA	
   showed	
   no	
   significant	
   interaction	
   between	
  

NTD	
  and	
  γ-2 presence	
  (F1,	
  24	
  =	
  9.733	
  ×	
  10−4,	
  P	
  =	
  0.9754). 



	
  

 

 

Figure S3. Immunoprecipitation (IP) of TARP γ-2 with GluA2i mutants, related to 

Figure 4. 

A. Representative IP of γ-2 with GluA2i-wt (left) and GluA2i-ΔNTD (right). The 

blot was probed with polyclonal anti γ-2 (top panel) and anti-Flag antibody to detect 

GluA2i. Substantially less γ-2 precipitated with the ΔNTD mutant. Both wt and 

ΔNTD GluA2i migrated as monomer (M) and dimer (D), denoted by arrowheads. 

Note that inputs were comparable, while amounts of IPed TARP γ-2 varied between 

conditions. 

B. Representative IP of GluA2i-wt (left) and GluA2i-Δlink (right) with γ-2. 

There was no visible difference between GluA2i-wt and the Δlink mutant with regard 

to TARP γ-2 association. The lower panel show that comparable amounts of γ-2 were 

present in the two reactions. 



	
  

 

	
  

Figure S4.  Mapping the TARP γ-2 contact region on GluA2, related to Figure 4. 

A.  Regions of GluA2 and GluA3 AMPARs binding to TARP γ-2. Array 

membrane containing GluA2 and -A3 peptides was probed with anti-γ-2 antibody 

only (AB control, top panel), or incubated with purified γ-2 protein before AB-

probing (lower panel) and exposed for 20 minutes. Note the absence of γ-2 signal 

across the GluA2 linker region (blue box). The NTD-binding region is boxed in red, 

the LBD region in grey and the TM segments in green. Peptide numbers are indicated 

on the sides. Lower panel shows the binding of TARP γ-2 to the GluA3 region 



	
  

flanking the NTD-LBD linker. Binding is observed for the GluA3 NTD and LBD but 

not for the linker peptides. Non-specific signals are indicated by the tilted white arrow. 

B. TARP γ-2 interaction sites on the GluA2 NTD. Contact sites are shown in 

deep-red (strong interaction) or light pink (weaker interaction). The orange footprint 

outlines the tetrameric interface that is formed between two NTD dimers in crystal 

structures. The bottom panel shows the GluA2 NTD dimer superposed on the full-

length structure (PDB: 3KG2), with the tetrameric interface (between the NTD 

dimers) coloured in orange. The stippled line denotes the NTD dimer interface. Upper 

lobe (UL), lower lobe (LL). 

C. TARP γ-2 interactions with the NTD “floor” (a potential NTD-LBD interface). 

The relative strength of binding is indicated by the same colour gradient as in panel B. 

The positions of helices H and F are indicated. The stippled line denotes the dimer 

interface. 

D. TARP γ-2 interactions with the LBD. Structural elements involved in the 

TARP-interaction are shown in brown (strong interaction) and yellow (weaker 

interaction) in front view (left) and side view (right). Contacts spanning the ligand-

binding cleft region are indicated by the red line (‘TARP bridge’) and involve β-2 in 

the LBD upper lobe and helix H in the lower lobe. LBD helices J and K are the target 

of alternative splicing (flip-flop). 



	
  

 

 

 

Figure S5. Effects of Ex1 mutations in TARP γ-2 on GluA2 channel conductance 

and rectification, related to Figure 6. 

A. Pooled data (mean ± SEM) showing the effects of Ex1 mutations in γ-2 on 

weighted mean single-channel conductance from NSFA (10 mM L-glutamate, 100 ms, 

–60 mV). Values were compared using one-way ANOVA (Welch heteroscedastic F 

test: F4, 21.02 = 12.26, P = 2.67 × 10−5). Pairwise comparisons showed that γ-2 wt (n = 

12) and all three γ-2 mutants (KGL74-76, KQID78-81 and WRT64-66; n = 11, 7 and 13, 

respectively) increased channel conductance compared to that of GluA2 alone (n = 8) 

(** P < 0.01, *** P < 0.001) (two-sided Welch two-sample t-tests with Holm’s 

sequential Bonferroni correction for multiple comparisons). For each of the mutants, 

the conductance was not statistically different from that seen with γ-2 wt.  Shown to 

the right are representative individual current-variance plots for GluA2/ γ-2 wt and 



	
  

GluA2/ γ-2 WRT64-66. The single channel current (i) is derived from the fitted curve 

(solid line); the dashed line indicates the background variance. 

B. Pooled data showing the effects of mutations in γ-2 on the rectification index 

(RI) of GluA2. Presentation and analysis as in A (F4, 18.16 = 79.31, P = 3.02 × 10−11; 

*** P < 0.001 compared to GluA2 alone and ### P < 0.001 compared to γ-2 wt). 

Shown to the right are representative normalized I-V plots from patches expressing 

GluA2/ γ-2 wt and GluA2/ γ-2 WRT64-66. Fitted curves are 8th order polynomials. Note 

that WRT64-66 produced less change in RI than did γ-2 wt. This change in RI appeared 

to reflect changes in spermine permeation, as the effects of WRT64-66 were evident in 

the outward limb of the I-V but not apparent at negative voltages, where the 

conductance-voltage plots were essentially indistinguishable (data not shown). 

 



	
  

 

 

Figure S6.  TARP contacts with the NTD may require AMPAR reorganization, 

related to Figure 4. 

A. TARP γ-2 contact region mapped onto the GluA2 tetramer (PDB: 3KG2). 

Binding sites on the NTD, LBD and LBD-TMD linkers are indicated in red. The 

position where L-glutamate binds is indicated with stars. The potential movement 

NTDs need to undergo to contact the TARPs is denoted with grey arrows.  

B. Model outlining the reorganization in the AMPAR extracellular region that 

may accompany TARP interaction. Left panel: Without TARP, the NTD and LBD are 

loosely connected. Any potential allosteric signal emanating from the NTD is not 

transmitted to the LBD (and the receptor), i.e. the NTD is functionally isolated 

(yellow circles). Right panel: The TARP ‘bridges’ NTD and LBD. This requires 

substantial receptor reconfiguration mediated by the NTD-LBD linkers.  As a result 

the NTD and LBD are functionally connected (yellow ellipsoid). 

	
  



	
  

	
  

 GluA2 NTD  GluA2 LBD 81 GVARVRKSKGKYAYL 

1 DLKGALLSLIEYYQW 40 VTTILESPYVMMKKN 82 VRKSKGKYAYLLEST 

2 ALLSLIEYYQWDKFA 41 LESPYVMMKKNHEML 83 KYAYLLESTMNEYIE 

3 LIEYYQWDKFAYLYD 42 MMKKNHEMLEGNERY 84 LLESTMNEYIEQRKP 

4 YQWDKFAYLYDSDRG 43 NHEMLEGNERYEGYC 85 NEYIEQRKPCDTMKV 

5 KFAYLYDSDRGLSTL 44 LEGNERYEGYCVDLA 86 EQRKPCDTMKVGGNL 

6 LYDSDRGLSTLQAVL 45 ERYEGYCVDLAAEIA 87 CDTMKVGGNLDSKGY 

7 RGLSTLQAVLDSAAE 46 GYCVDLAAEIAKHCG 88 KVGGNLDSKGYGIAT 

8 AVLDSAAEKKWQVTA 47 DLAAEIAKHCGFKYK 89 NLDSKGYGIATPKGS 

9 AEKKWQVTAINVGNI 48 EIAKHCGFKYKLTIV 90 KGYGIATPKGSSLGN 

10 WQVTAINVGNINNDK 49 CGFKYKLTIVGDGKY 91 IATPKGSSLGNAVNL 

11 AINVGNINNDKKDET 50 YKLTIVGDGKYGARD 92 KGSSLGNAVNLAVLK 

12 GNINNDKKDETYRSL 51 IVGDGKYGARDADTK 93 LGNAVNLAVLKLNEQ 

13 KDETYRSLFQDLELK 52 GKYGARDADTKIWNG 94 VNLAVLKLNEQGLLD 

14 YRSLFQDLELKKERR 53 ARDADTKIWNGMVGE 95 VLKLNEQGLLDKLKN 

15 DLELKKERRVILDCE 54 DTKIWNGMVGELVYG 96 NEQGLLDKLKNKWWY 

16 KKERRVILDCERDKV 55 WNGMVGELVYGKADI 97 LLDKLKNKWWYDKGE 

17 RVILDCERDKVNDIV 56 VGELVYGKADIAIAP 98 LKNKWWYDKGECGSG 

18 DCERDKVNDIVDQVI 57 VYGKADIAIAPLTIT 99 WYDKGECGSGGGDSK 

19 VNDIVDQVITIGKHV 58 ADIAIAPLTITLVRE 100 GECGSGGGDSKEKTS 

20 DQVITIGKHVKGYHY 59 IAPLTITLVREEVID 101 GGGDSKEKTSALSLS 

21 IGKHVKGYHYIIANL 60 TITLVREEVIDFSKP 102 GGDSKEKTSALSLSN 

22 VKGYHYIIANLGFTD 61 REEVIDFSKPFMSLG  GluA3 Linker 
23 HYIIANLGFTDGDLL 62 IDFSKPFMSLGISIM 103 MKVSGSRKAGYWNEY 

24 ANLGFTDGDLLKIQF 63 KPFMSLGISIMIKKP 104 GSRKAGYWNEYERFV 

25 FTDGDLLKIQFGGAN 64 LGISIMIKKPQKSKP 105 AGYWNEYERFVPFSD 

26 LLKIQFGGANVSGFQ 65 GISIMIKKPQKSKPG 106 NEYERFVPFSDQQIS 

27 LKIQFGGANVSGFQI 66 VERMVSPIESAEDLS 107 VPFSDQQISNDSSSS 

28 TINIMELKTNGPRKI 67 MVSPIESAEDLSKQT 108 DQQISNDSSSSENRT 

29 INIMELKTNGPRKIG 68 IESAEDLSKQTEIAY 109 NDSSSSENRTIVVTT 

30 IMELKTNGPRKIGYW 69 EDLSKQTEIAYGTLD 110 SSENRTIVVTTILES 

31 KTNGPRKIGYWSEVD 70 KQTEIAYGTLDSGST 111 RTIVVTTILESPYVM 

32 RKIGYWSEVDKMVVT 71 YGTLDSGSTKEFFRR 112 VTTILESPYVMYKKN 

  72 SGSTKEFFRRSKIAV  GluA2 TMs  
 GluA2 Linker 73 KEFFRRSKIAVFDKM 113 YEIWMCIVFAYIGVS 

33 YWSEVDKMVVTLTEL 74 RRSKIAVFDKMWTYM 114 VFAYIGVSVVLFLVS 

34 VDKMVVTLTELPSGN 75 IAVFDKMWTYMRSAE 115 FGIFNSLWFSLGAFM 

35 VVTLTELPSGNDTSG 76 DKMWTYMRSAEPSVF 116 SLWFSLGAFMQQGCD 

36 TELPSGNDTSGLENK 77 YMRSAEPSVFVRTTA 117 VWWFFTLIIISSYTA 

37 NDTSGLENKTVVVTT 78 AEPSVFVRTTAEGVA 118 IIISSYTANLAAFLT 

38 GLENKTVVVTTILES 79 VFVRTTAEGVARVRK 119 VAGVFYILVGGLGLA 

39 KTVVVTTILESPYVM 80 TTAEGVARVRKSKGK 120 VGGLGLAMLVALIEF 

 



	
  

 
 
Table S1. Sequences of peptides immobilized in the GluA2 array, related to Figure 4. 

 

Peptides include residues 107-238, 348-510, 520-541, 568-587 and 601-811 of 

mature GluA2o. Peptide numbering and colour code match Figure 4 and S4. Array 

also includes residues 360-413 of the GluA3 NTD-LBD linker (shown in Figure S4A). 

	
  



	
  

	
  
  γ-2  γ-8  
  Ex1  Ex1  

 1 DYWLYSRGVCKTKSV 22 (1) STDYWLYTRALICNT  

 2 YSRGVCKTKSVSENE 23 (2) WLYTRALICNTTNLT  

 3 VCKTKSVSENETSKK 24 (3) RALICNTTNLTAGDD  

 4 KSVSENETSKKNEEV 25 (4) CNTTNLTAGDDGPPH  

 5 ENETSKKNEEVMTHS 26 (5) NLTAGDDGPPHRGGS  

 6 SKKNEEVMTHSGLWR 27 (6) GDDGPPHRGGSGSSE  

 7 EEVMTHSGLWRTCCL 28 (7) PPHRGGSGSSEKKDP  

 8 THSGLWRTCCLEGNF 29 (8) GGSGSSEKKDPGGLT  

 9 LWRTCCLEGNFKGLC 30 (9) SSEKKDPGGLTHSGL  

 10 CCLEGNFKGLCKQID 31 (10) KDPGGLTHSGLWRIC  

 11 GNFKGLCKQIDHFPE 32 (11) GLTHSGLWRICCLEG  

 12 GLCKQIDHFPEDADY 33 (12) SGLWRICCLEGLKRG  

 13 QIDHFPEDADYEADT 34 (13) RICCLEGLKRGVCVK  

 14 FPEDADYEADTAEYF 35 (14) LEGLKRGVCVKINHF  

 15 ADYEADTAEYFLRAV 36 (15) KRGVCVKINHFPEDT  

 16 YEADTAEYFLRAVRA 37 (16) CVKINHFPEDTDYDH  

   38 (17) NHFPEDTDYDHDSAE  

   39 (18) EDTDYDHDSAEYLLR  

   40 (19) YDHDSAEYLLRVVRA  

   41 (20) DHDSAEYLLRVVRAS  

  Ex2  Ex2  

 17 VYISANAGDPSKSDS 42 (21) VYISANAGEPGPKRD  

 18 ANAGDPSKSDSKKNS 43 (22) ANAGEPGPKRDEEKK  

 19 DPSKSDSKKNSYSYG 44 (23) EPGPKRDEEKKNHYS  

 20 SDSKKNSYSYGWSFY 45 (24) KRDEEKKNHYSYGWS  

 21 DSKKNSYSYGWSFYF 46 (25) DEEKKNHYSYGWSFY  

	
  

Table S2. Sequences of peptides immobilized in the TARP arrays, related to Figure 5.	
  

Ex1 and Ex2 denote the two extracellular loops of TARPs. Peptide numbering 

matches Figure 5, which contains both TARPs in the same membrane.  Numbers in 

parentheses correspond to peptides in 5C (central panel), which only contains γ-8. 

Colour code as in Figure 5.	
  

	
  



	
  

	
  
Supplemental Experimental Procedures	
  

	
  

Protein preparation 

His-tagged γ-2 was produced in insect cells using a P1 baculovirus stock and a 

purification protocol provided by T. Nakagawa. The high-titer viral stocks were 

obtained following the Bac-N-BlueTM protocol from Invitrogen. Briefly, 1 x 106 SF9 

cells were plated into a 25 cm2 flask containing 5 ml of complete TNM-FH medium 

(Sigma Aldrich) and infected with 20 µl of the P1 viral stock. The flask was incubated 

at 27 °C until all the cells were lysed; 4 ml of this supernatant (the P2 viral stock) 

were used to infect 500 ml of SF9 cells at a density of 1 x 106 SF9 cells/ml. The 

culture was incubated for 1 week and the high-titer P3 viral stock was recovered by 

centrifugation and kept at 4 °C until infection. For protein production, 500-2000 ml of 

SF9 cells grown in SF900TM II serum-free medium  (Gibco®) were infected with P3 

high-titer viral stock and incubated for 48-72 hours. Cells were collected by 

centrifugation and re-suspended in 20 mM HEPES, pH 7.35, 320 mM sucrose, 5 mM 

EDTA, 5 mM EGTA, protease inhibitors (Roche) using a Dounce homogenizer. Cells 

were sonicated and membranes were washed in consecutive steps of re-suspension 

and ultracentrifugation using 1 M KI, 4 M urea and 20 mM imidazole in 20 mM 

HEPES, pH 7.35. Membrane protein solubilization was performed in 0.6 % decyl-

maltoside (DM). After ultracentrifugation, the supernatant containing the His-tagged 

γ-2 was incubated with chelating sepharose beads (GE Healthcare) charged with Co2+ 

and the protein was eluted with 250 mM imidazole, 0.3 % DM, 20 mM HEPES, pH 

7.35, 150 mM NaCl. Protein was concentrated, flash-frozen and conserved at -20 °C. 



	
  

γ-2 concentration was estimated spectrophotometrically using the theoretical 

extinction coefficient in water, 39.2 mM-1 cm-1. 

 

The GluA2 NTD was produced and purified from stably transfected GntI- HEK293S 

cells as described previously (Rossmann et al., 2011). The purification consisted of 

cross-flow concentration and dialysis against 50 mM Tris pH 8, 150 mM NaCl; 

affinity purification with a HisTrap HP column (GE Healthcare) and gel filtration 

using a HiLoadTM SuperdexTM 200 column (GE Healthcare). The pure glycosylated 

GluA2 NTD was concentrated in 20 mM HEPES, 150 mM NaCl, pH 7.4 and kept at 4 

°C. 

 

The GluA2i LBD  (S1S2J R/flip construct) was sub-cloned with different tags in 

order to allow its detection in the peptide arrays.  GluA2i LBD was first sub-cloned 

into the pGEX4T-2 vector (GE Healthcare), which contains an N-terminal GST-tag 

followed by a thrombin cleavage site. The plasmid was transformed into Escherichia 

coli Origami B (DE3) and grown at 37 °C to A600=0.9-1. Cultures were cooled to 18 

°C and expression was induced by the addition of 0.4 mM IPTG. Cultures were 

grown at 18 °C for 20 hours. Cells were sonicated and the lysate was incubated with 

Glutathione Sepharose 4b beads (GE Healthcare). The protein was eluted with 10 mM 

reduced-Glutathione and further purified using a Superdex 200 10/300 column (GE 

Healthcare). Protein was flash-frozen and kept at -20 °C until used.  

 

A Flag-tag (DYKDDDDK) was also introduced by PCR at the C-terminus of GluA2i 

LBD and the gene was subcloned into a modified pET22b(+) plasmid containing an 

N-terminal His8 affinity tag and a thrombin cleavage site. The plasmid was 



	
  

transformed into E. coli Origami B (DE3) cells and cultures were grown at 37 °C until 

A600 reached 0.6–0.9. Cells were cooled to 18 °C and over-expression was induced 

with 0.4 mM IPTG for 20 hours. After cell lysis, protein was purified by affinity 

chromatography using a HisTrap HP column (GE Healthcare) followed by thrombin 

cleavage and gel filtration chromatography (HiLoadTM SuperdexTM 200 column, GE 

Healthcare).  

 

The same procedure was used to add a Flag-tag to the GluK2 LBD S1S2 construct 

(provided by Mark L. Mayer). The resulting protein includes a 19 peptide (MH8 

SSGLVPRGSAM) containing a thrombin cleavage site, the residues S398–K513 and 

P636–E775 of GluK2 connected by a GT linker and the Flag-tag at the C-terminus 

(DYKDDDDK). The protein production and purification protocol was the same as 

described for the GluA2i LBD Flag. Both Flag-tagged proteins were concentrated in 

20 mM HEPES, 150 mM NaCl, pH 7.4, 1 mM L-glutamate and conserved at -20 °C. 

 

Immunoprecipitations 

HEK293 cells were transfected with vectors expression GluA2-IRES-EGFP and 

TARP γ-2 (IRES-RFP) at a ratio of 4:1, alternatively GluA2 was transfected into 

HEK cells stably expressing γ-2. After 2 days of expression, cells were washed with 

cold PBS, scraped into PBS containing protease inhibitors and centrifuged for 10 

mins at 10K rpm for in an Eppendorf 5424R. Pellets were extracted in 1% CHAPS 

buffer containing in (mM): HEPES (20; pH 7.4), NaCl (150), EDTA (2), 1% CHAPS 

and protease inhibitors for 45 mins at 4˚C. Extracts were centrifuged for 30 min at 

4˚C in an Eppendorf 5424R centrifuge at full speed. Supernatants were IPed with 5 μg 

of anti- γ-2 AB (Millipore) for 2 hrs at 4˚C and precipitated with 10 μl of equilibrated 



	
  

(in CHAPS buffer) protein A beads (Santa Cruz). Lysates were run on 4-12% Bolt 

gels (Invitrogen) and gels analyzed by Western blotting. 

 

Peptide arrays 

To analyze the interaction between AMPAR and TARPs we obtained peptide arrays 

synthesized by SPOT synthesis on Whatman 50 cellulose membranes  (PepSpotsTM; 

JPT Peptide Technologies GmbH).  AMPAR and TARP arrays contained 15-mer 

overlapping peptides shifted by 4 residues. The AMPAR array contained 128 peptides 

covering the lower lobe of GluA2 NTD, the NTD-LBD linkers with and without 

glycosylated residues (GluA2 and -A3 subunits), the GluA2 LBD and the four trans-

membrane helices (Figure 4B, Table S1). The TARP array contained 46 peptides 

covering the two extracellular loops (Ex1 and Ex2) of γ-2 and γ-8 (Figure 5, Table 

S2). 

 

Membranes were probed according to manufacturer instructions.  As these 

membranes cannot be regenerated reliably, control experiments with the antibodies 

(ABs) were performed prior to incubation with the test proteins. Controls were 

essential and extensive to select the most adequate blocking agents, antibodies and 

protein tags, as some ABs showed false positives or high background in the cellulose 

membranes. Anti-His and anti-GST ABs showed signals in the control experiments 

whereas Flag M2 AB (Sigma), anti-AMPAR 2 (extracellular) AB (Alomone) or anti-

Stargazin AB (Millipore) controls showed few false positives (Figures 4C and 5B).  

 

For the protein binding assay, membranes were rinsed with methanol for 5 minutes, 

washed 3 times with TBS and incubated with blocking solution (5 % BSA in TBS) 



	
  

for 2 hours at RT or overnight at 4 °C. After blocking, arrays were incubated with the 

test proteins overnight at 4 °C.  The AMPAR array was incubated with ∼2.8 µM γ-2 

in blocking solution with 0.15 % DM. TARP arrays were incubated with ∼1.6 µM 

GluA2 NTD, ∼1.6 µM GluA2i LBD-Flag or ∼1.6 µM GluK2 LBD-Flag in blocking 

solution. Membranes were washed three times in TBS and incubated for 1-2 hours at 

RT with the following ABs: anti-AMPAR 2 (extracellular) AB (Alomone) diluted 

1:250 in blocking solution; anti-Stargazin AB (Millipore) diluted 1:1000 in blocking 

solution; and monoclonal anti-Flag M2 antibody (Sigma) diluted 1:1000 in blocking 

solution. After 3 washes with TBS membranes were incubated for 1 hour at RT with 

HRP-conjugated anti-rabbit AB (Pierce) (1:1500 in blocking buffer) or 2 hours at RT 

with HRP-conjugated anti-mouse AB (Pierce) (1:1000 in blocking buffer). 

Membranes were washed 3 times, developed using chemiluminescence (Amersham 

ECL solution) and images were captured electronically with a ChemiDocTM MP 

Imaging System  (Biorad) or on X-ray film. Films were scanned and edited with 

Photoshop CS4 using auto-tone editing followed by a change to gray-scale mode.  

 

Heterologous expression 

HEK293 or HEK293T cells (ATCC), cultured at 37°C and 5% CO2 in DMEM 

(Gibco) supplemented with 10% fetal bovine serum and penicillin/streptomycin, were 

transiently transfected with plasmid DNA using Effectene (Qiagen) or Lipofectamine 

2000 (Invitrogen). After 24-32 hours (Effectene) or 8-14 hours (Lipofectamine 2000), 

the cells were split onto poly-L-lysine-coated glass coverslips and 

electrophysiological recordings were performed 12-48 hours later. When co-

transfected with TARPs, cells were grown in the presence of 30-50 μM 2,3-dioxo-6-



	
  

nitro-1,2,3,4-tetrahydrobenzo[f]quinoxaline-7-sulfonamide (NBQX; Tocris-ABCam) 

to avoid AMPAR-mediated toxicity. 

 

Electrophysiology  

Cells were visualized with an inverted microscope (Diaphot 200; Nikon) or fixed 

stage upright microscope (Axioskop FS1; Zeiss) and perfused with an ‘external’ 

solution containing (in mM): NaCl (145), KCl (3), CaCl2 (2), MgCl2 (1), glucose (10) 

and HEPES (10), adjusted to pH 7.4 with NaOH. Electrodes were fabricated from 

borosilicate glass (1.5mm o.d., 0.86mm i.d., Science Products GmbH or Harvard 

Apparatus) pulled with a PC-10 vertical puller (Narishige). When filled with an 

‘internal’ solution, containing (mM): CsF (120), CsCl (10), EGTA (10), ATP-sodium 

salt (2), and HEPES (10), adjusted to pH 7.3 with CsOH, they had a final resistance of 

2-5 MΩ. Macroscopic currents were recorded at room temperature (RT; 22-25 ˚C) 

from outside-out patches excised from GFP-positive cells and voltage-clamped at –60 

mV. Currents were recorded with Axopatch 1D, 200A or 2D amplifiers, low-pass 

filtered at 10 kHz and digitized at 50 kHz using a Digidata 1440A interface with 

pClamp 9 or 10 software (Molecular Devices).  

For the experiments described in Figures 6 and S5 there were minor modifications of 

some experimental details; these reflected the established protocols of the two 

participating labs and, where compared directly, did not affect the outcome. For the 

experiments on TARP Ex1 mutants (Figures 6 and S5) the external solution 

contained  (in mM) NaCl (145), KCl (2.5), CaCl2 (1), MgCl2 (1), glucose (10) and 

HEPES (10), adjusted to pH 7.3 with NaOH. The internal solution contained (in mM) 

CsCl (145), EGTA (1), ATP-magnesium salt (4), NaCl (2.5) and HEPES (10), 

adjusted to pH 7.3 with CsOH. Electrodes were coated with Sylgard (Dow Corning 



	
  

184) and had a final resistance of 6-14 MΩ. Aside from experiments in which 

KA/Glu ratios were measured, spermine tetrahydrochloride (100 μM; Tocris 

Bioscience or Sigma Aldrich) was added to the internal solution.  

 

Agonist application to excised patches 

Rapid agonist application was achieved by switching between a continuously flowing 

control solution and an agonist-containing solution, applied via a theta-barrel 

application tool made from borosilicate glass (2mm o.d.; Hilgenberg GmbH) pulled to 

a tip diameter of ~200 μm and mounted on a piezoelectric translator (Burleigh PZS 

200 or LSS-3000/PZ-150M; EXFO Life Sciences & Industrial Division). At the end 

of each experiment, the adequacy of the solution exchange was assessed by 

destroying the patch and measuring liquid-junction current at the open pipette (typical 

10% - 90% solution exchange time of ~200 μs).  

 

Kinetics of AMPAR-mediated responses 

Desensitization of AMPARs was examined in response to 100 ms applications of 10 

mM L-glutamate. The averaged currents were fitted using a double-exponential 

function to calculate the weighted time constant of desensitization (τw,des) according 

to: 

 

 

 

where Af and τf are the amplitude and time constant of the fast component of 

desensitization and As and τs are the amplitude and time constant of the slow 



	
  

component of desensitization.  The weighted time constant of deactivation (τw,deact) 

was determined in a similar manner, by fitting the current decay following 1 ms 

applications of 10 mM L-glutamate. In some cases the desensitization or deactivation 

time course was best described by a single exponential. The steady state-to-peak ratio 

(SS/peak) was determined as the current at the end of the 100 ms pulse divided by the 

peak current.  

 

Recovery from desensitization was assessed by a paired-pulse protocol where a 100 

ms desensitizing pulse was followed by a 10 ms pulse in increasing intervals. The 

relative response to the second pulse (usually the average of three consecutive runs) 

was then plotted against time elapsed from the first pulse and the time course fitted 

with a single-exponential function to obtain the time constant of recovery (τrec). 

 

Relative kainate efficacy  

The effects of TARPs on the efficacy of the partial agonist kainate (KA) were 

determined by measuring changes in KA/Glu ratios. Each patch was exposed to L-

glutamate (500 μM; 15 applications of 100 ms duration, –60 mV), then KA (500 μM), 

and then L-glutamate again. Both control and agonist solutions contained 100 μM 

cyclothiazide to block AMPAR desensitization. The amplitude of the steady state 

current response to KA was compared to average amplitude of the steady state current 

responses to L-glutamate obtained before and after KA application.    

 

Non-stationary fluctuation analysis (NSFA) 

To deduce channel properties from macroscopic responses, L-glutamate (10 mM) was 

applied to outside-out patches (100 ms duration, 1 Hz, Vhold –60mV) and the ensemble 



	
  

variance of all successive pairs of current responses were calculated (Conti et al., 

1980). The single channel current (i) and the total number of channels in the patch (N) 

were determined by plotting this ensemble variance against mean current (I) and 

fitting with a parabolic function (Sigworth, 1980): 

 

where σ2
B is the background variance. The weighted-mean single-channel 

conductance was determined from the single-channel current and the holding 

potential. No correction for liquid-junction potential was used.  

 

Current-voltage (I-V) plots and the quantification of rectification 

I-V plots were generated from the peak current response to 1 ms applications of 10 

mM glutamate. The voltage was stepped from –100 mV to +60 mV in 10 mV 

increments. Mean current amplitudes at each voltage were normalized to the peak 

current at –100 mV and plotted against membrane potential. The relationships were 

fitted with 8th or 9th order polynomials. The rectification index (RI) was determined 

from the I-V relationship of each patch as the ratio of slope conductance at positive 

(+40 mV to +60 mV) and negative voltages (–40 mV to –60 mV). Thus, for a 

completely linear I-V relationship RI would equal 1. 

 

Analysis and statistics 

Recordings were analyzed using IGOR Pro (Wavemetrics Inc.) with NeuroMatic (J. 

Rothman, UCL; http://www.neuromatic.thinkrandom.com). Summary data are 

presented in the text as the mean ± SEM from n patches and in the figures as bar plots 

of the group mean, with error bars denoting SEM. Comparisons involving two data 



	
  

sets only were performed using a two-sided Welch two-sample t test. All analyses 

involving data from three or more groups were performed using one- or two-way 

analysis of variance (Welch heteroscedastic F test) followed by pairwise comparisons 

using two-sided Welch two-sample t tests (with Holm’s sequential Bonferroni 

correction for multiple comparisons). Differences were considered significant at P < 

0.05. Statistical tests were performed using Prism 4.0/6.0 (GraphPad Software Inc.) or 

R (version 3.0.2, The R Foundation for Statistical Computing, http://www.r-

project.org/) and RStudio (version 0.98.313, RStudio, Inc.). 
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