348 research outputs found

    Linear Finite-Field Deterministic Networks With Many Sources and One Destination

    Get PDF
    We find the capacity region of linear finite-field deterministic networks with many sources and one destination. Nodes in the network are subject to interference and broadcast constraints, specified by the linear finite-field deterministic model. Each node can inject its own information as well as relay other nodes' information. We show that the capacity region coincides with the cut-set region. Also, for a specific case of correlated sources we provide necessary and sufficient conditions for the sources transmissibility. Given the "deterministic model" approximation for the corresponding Gaussian network model, our results may be relevant to wireless sensor networks where the sensing nodes multiplex the relayed data from the other nodes with their own data, and where the goal is to decode all data at a single "collector" node.Comment: 5 pages, 3 figures, submitted to ISIT 201

    Caching and Coded Multicasting: Multiple Groupcast Index Coding

    Full text link
    The capacity of caching networks has received considerable attention in the past few years. A particularly studied setting is the case of a single server (e.g., a base station) and multiple users, each of which caches segments of files in a finite library. Each user requests one (whole) file in the library and the server sends a common coded multicast message to satisfy all users at once. The problem consists of finding the smallest possible codeword length to satisfy such requests. In this paper we consider the generalization to the case where each user places L≥1L \geq 1 requests. The obvious naive scheme consists of applying LL times the order-optimal scheme for a single request, obtaining a linear in LL scaling of the multicast codeword length. We propose a new achievable scheme based on multiple groupcast index coding that achieves a significant gain over the naive scheme. Furthermore, through an information theoretic converse we find that the proposed scheme is approximately optimal within a constant factor of (at most) 1818.Comment: 5 pages, 1 figure, to appear in GlobalSIP14, Dec. 201

    The academic and industrial embrace of space-time methods

    Get PDF
    [Guest Editors introduction to: Special issue on space-time transmission, reception, coding and signal processing] Every episode of the classic 1966–1969 television series Star Trek begins with Captain Kirk’s (played by William Shatner) famous words : “Space: The final frontier….” While space may not be the final frontier for the information and communication theory community, it is proving to be an important and fruitful one. In the information theory community, the notion of space can be broadly defined as the simultaneous use of multiple, possibly coupled, channels. The notions of space–time and multiple-input multiple-output (MIMO) channels are therefore often used interchangeably. The connection between space and MIMO is most transparent when we view the multiple channels as created by two or more spatially separated antennas at a wireless transmitter or receiver. A large component of the current interest in space–time methods can be attributed to discoveries in the late 1980s and early 1990s that a rich wireless scattering environment can be beneficial when multiple antennas are used on a point-to-point link. We now know that adding antennas in a rich environment provides proportional increases in point-to-point data rates, without extra transmitted power or bandwidth

    Closed-form performance analysis of linear MIMO receivers in general fading scenarios

    Full text link
    Linear precoding and post-processing schemes are ubiquitous in wireless multi-input-multi-output (MIMO) settings, due to their reduced complexity with respect to optimal strategies. Despite their popularity, the performance analysis of linear MIMO receivers is mostly not available in closed form, apart for the canonical (uncorrelated Rayleigh fading) case, while for more general fading conditions only bounds are provided. This lack of results is motivated by the complex dependence of the output signal-to-interference and noise ratio (SINR) at each branch of the receiving filter on both the squared singular values as well as the (typically right) singular vectors of the channel matrix. While the explicit knowledge of the statistics of the SINR can be circumvented for some fading types in the analysis of the linear Minimum Mean-Squared Error (MMSE) receiver, this does not apply to the less complex and widely adopted Zero-Forcing (ZF) scheme. This work provides the first-to-date closed-form expression of the probability density function (pdf) of the output ZF and MMSE SINR, for a wide range of fading laws, encompassing, in particular, correlations and multiple scattering effects typical of practically relevant channel models.Comment: 16 pages, 2 figures, contents submitted to IEEE/VDE WSA 201

    On the Effectiveness of OTFS for Joint Radar Parameter Estimation and Communication

    Get PDF
    We consider a joint radar parameter estimation and communication system using orthogonal time frequency space (OTFS) modulation. The scenario is motivated by vehicular applications where a vehicle (or the infrastructure) equipped with a mono-static radar wishes to communicate data to its target receiver, while estimating parameters of interest related to this receiver. Provided that the radar-equipped transmitter is ready to send data to its target receiver, this setting naturally assumes that the receiver has been already detected. In a point-to-point communication setting over multipath time-frequency selective channels, we study the joint radar and communication system from two perspectives, i.e., the radar parameter estimation at the transmitter as well as the data detection at the receiver. For the radar parameter estimation part, we derive an efficient approximated Maximum Likelihood algorithm and the corresponding Cramér-Rao lower bound for range and velocity estimation. Numerical examples demonstrate that multi-carrier digital formats such as OTFS can achieve as accurate radar estimation as state-of-the-art radar waveforms such as frequency-modulated continuous wave (FMCW). For the data detection part, we focus on separate detection and decoding and consider a soft-output detector that exploits efficiently the channel sparsity in the Doppler-delay domain. We quantify the detector performance in terms of its pragmatic capacity, i.e., the achievable rate of the channel induced by the signal constellation and the detector soft-output. Simulations show that the proposed scheme outperforms concurrent state-of-the-art solutions. Overall, our work shows that a suitable digitally modulated waveform enables to efficiently operate joint radar parameter estimation and communication by achieving full information rate of the modulation and near-optimal radar estimation performance. Furthermore, OTFS appears to be particularly suited to the scope

    On the Average Performance of Caching and Coded Multicasting with Random Demands

    Full text link
    For a network with one sender, nn receivers (users) and mm possible messages (files), caching side information at the users allows to satisfy arbitrary simultaneous demands by sending a common (multicast) coded message. In the worst-case demand setting, explicit deterministic and random caching strategies and explicit linear coding schemes have been shown to be order optimal. In this work, we consider the same scenario where the user demands are random i.i.d., according to a Zipf popularity distribution. In this case, we pose the problem in terms of the minimum average number of equivalent message transmissions. We present a novel decentralized random caching placement and a coded delivery scheme which are shown to achieve order-optimal performance. As a matter of fact, this is the first order-optimal result for the caching and coded multicasting problem in the case of random demands.Comment: 5 pages, 3 figure, to appear in ISWCS 201

    Comparation of the new rebound tonometer IOPen and the Goldmann tonometer, and their relationship to corneal properties

    Get PDF
    Purpose To compare the intraocular pressures (IOPs) obtained with the IOPen rebound tonometer, Goldmann applanation tonometer (GAT) and the ocular response analyzer (ORA) and investigate the effects of corneal biomechanical properties on IOPen measurements. Methods A total of 198 normal eyes were included in this cross-sectional and randomized study. Three measurements were taken using IOPen. Agreement between tonometers was calculated using the Bland and Altman limits of agreement (LoA) analysis. Results The median IOPen IOP was 3mmHg below the GAT (Po0.001), 3mmHg below the ORA IOP similar to Goldmann (IOPg), and 3mmHg below the ORA IOP corrected using corneal parameters (IOPcc)(Po0.01). The LoA width between the IOPen and GAT IOPs varied between 13.92 (mean IOPen IOP) and 15.99mmHg (third IOPen measurement). The central corneal thickness (CCT) was unrelated to IOPen measurements (P40.05). Corneal hysteresis (CH) and corneal rigidity factor (CRF) were correlated with IOPen and GAT. Conclusions IOPen underestimated the IOP compared with GAT and ORA. The effect of measurement quality or measurement order on IOPen was low. CCT did not affect the IOPen, but the CH and CRF did. The LoA width between the IOPen and GAT IOPs was higher than between the ORA IOPg or ORA IOPcc and GAT IOPs
    • …
    corecore