39 research outputs found

    Complex patterns of spontaneous initiations and terminations of reentrant circulation in a loop of cardiac tissue

    Full text link
    A two-component model is developed that consists of a discrete loop of cardiac cells that circulates action potentials together with a cardiac pacing mechanism. Physiological properties of cells such as restitutions of refractoriness and of conduction velocity are given via experimentally measured functions. The dynamics of circulating pulses and their interactions with the pacer are regulated by two threshold relations. Patterns of spontaneous initiations and terminations of reentry (SITR) generated by this system are studied through numerical simulations and analytical observations. These patterns can be regular or irregular; causes of irregularities are identified as the threshold bistability of reentrant circulation (T-bistability) and in some cases, also phase-resetting interactions with the pacer.Comment: 27 pages, 10 figures, 61 references; A version of this paper (same results) is to appear in the Journal of Theoretical Biology; arXiv V2 adds helpful commments to facilitate reading and corrects minor errors in presentatio

    The Role of Power-Law Correlated Disorder in the Anderson Metal-Insulator Transition

    Full text link
    We study the influence of scale-free correlated disorder on the metal-insulator transition in the Anderson model of localization. We use standard transfer matrix calculations and perform finite-size scaling of the largest inverse Lyapunov exponent to obtain the localization length for respective 3D tight-binding systems. The density of states is obtained from the full spectrum of eigenenergies of the Anderson Hamiltonian. We discuss the phase diagram of the metal-insulator transition and the influence of the correlated disorder on the critical exponents.Comment: 6 pages, 3 figure

    Stimulation of the cytosolic receptor for peptidoglycan, Nod1, by infection with Chlamydia trachomatis or Chlamydia muridarum.

    No full text
    International audienceInfection of epithelial cells by the intracellular pathogen, Chlamydia trachomatis, leads to activation of NF-kappaB and secretion of pro-inflammatory cytokines. We find that overexpression of a dominant-negative Nod1 or depletion of Nod1 by RNA interference inhibits partially the activation of NF-kappaB during chlamydial infection in vitro, suggesting that Nod1 can detect the presence of Chlamydia. In parallel, there is a larger increase in the expression of pro-inflammatory genes following Chlamydia infection when primary fibroblasts are isolated from wild-type mice than from Nod1-deficient mice. The Chlamydia genome encodes all the putative enzymes required for proteoglycan synthesis, but proteoglycan from Chlamydia has never been detected biochemically. Since Nod1 is a ubiquitous cytosolic receptor for peptidoglycan from Gram-negative bacteria, our results suggest that C. trachomatis and C. muridarum do in fact produce at least the rudimentary proteoglycan motif recognized by Nod1. Nonetheless, Nod1 deficiency has no effect on the efficiency of infection, the intensity of cytokine secretion, or pathology in vaginally infected mice, compared with wild-type controls. Similarly, Rip2, a downstream mediator of Nod1, Toll-like receptor (TLR)-2, and TLR4, increases only slightly the intensity of chlamydial infection in vivo and has a very mild effect on the immune response and pathology. Thus, Chlamydia may not produce sufficient peptidoglycan to stimulate Nod1-dependent pathways efficiently in infected animals, or other receptors of the innate immune system may compensate for the absence of Nod1 during Chlamydia infection in vivo

    A simple mechanistic model of seed dispersal, predation and plant establishment: Janzen-Connell and beyond

    Get PDF
    1. Although, in nature, seed dispersal usually declines with distance from the source, seedling establishment patterns are highly variable. An increase in seed survival can lead to either hump-shaped (Janzen-Connell (J-C) pattern) or declining (Hubbell pattern) establishment with distance from seed source, but declining establishment can also be generated if survival decreases with distance (McCanny pattern). Pathogens and seed predators are considered to be major mortality agents structuring recruitment patterns, but it is unclear how well predation alone can explain variation in these patterns. 2. We introduce a simple mechanistic model showing that distance and density-dependent seed predation can generate all of the observed recruitment patterns. Our approach provides the first mathematical reconstruction of conceptual models previously considered to be based on contrasting underlying mechanisms. Three easily measurable quantities (the proportion of seeds escaping predation at the source, and the mean distance from the source of dispersed seeds and of predators’ activity) can be used to test for consistency with the J-C pattern. The association between recruitment patterns and plant (dispersal) and animal (predation) characteristics is robust with respect to parameter values and various functional forms. 3. The model shows that the J-C pattern can occur only if the mean distance over which predators are active is lower than that over which seeds are dispersed, corresponding to a system with host-specific, or immobile, seed predators (often invertebrates) that are restricted to areas of high seed density near adult plants, and therefore selecting for longer dispersal distances of seeds. 4.The Hubbell pattern is generated by the model when dispersal and predation distances are of equivalent magnitudes. The McCanny pattern emerges if more generalized, or more mobile, seed predators (often vertebrates) are attracted to the adult trees but also tend to forage farther away, thereby selecting for short dispersal distances that generate high densities needed to satiate seed predators. 5.The model also predicts that the total number of seeds surviving predation is lowest at intermediate distances, suggesting that distance-dependent predation promotes either short or long dispersal distances, or both (dimorphism)
    corecore