164 research outputs found

    Do We See Eye to Eye? Moderators of Correspondence Between Student and Faculty Evaluations of Day-to-Day Teaching

    Full text link
    Students and instructors show moderate levels of agreement about the quality of day-to-day teaching. In the present study, we replicated and extended this finding by asking how correspondence between student and instructor ratings is moderated by time of semester and student demographic variables. Participants included 137 students and 5 instructors. On 10 separate days, students and instructors rated teaching effectiveness and challenge level of the material. Multilevel modeling indicated that student and instructor ratings of teaching effectiveness converged overall, but more advanced students and Caucasian students converged more closely with instructors. Student and instructor ratings of challenge converged early but diverged later in the semester. These results extend our knowledge about the connection between student and faculty judgments of teaching

    Shock Generation and Control Using DBD Plasma Actuators

    Get PDF
    This report is the final report of a NASA Phase I SBIR contract, with some revisions to remove company proprietary data. The Shock Boundary Layer Interaction (SBLI) phenomena in a supersonic inlet involve mutual interaction of oblique shocks with boundary layers, forcing the boundary layer to separate from the inlet wall. To improve the inlet efficiency, it is desired to prevent or delay shock-induced boundary layer separation. In this effort, Innovative Technology Applications Company (ITAC), LLC and the University of Notre Dame (UND) jointly investigated the use of dielectric-barrier-discharge (DBD) plasma actuators for control of SBLI in a supersonic inlet. The research investigated the potential for DBD plasma actuators to suppress flow separation caused by a shock in a turbulent boundary layer. The research involved both numerical and experimental investigations of plasma flow control for a few different SBLI configurations: (a) a 12 wedge flow test case at Mach 1.5 (numerical and experimental), (b) an impinging shock test case at Mach 1.5 using an airfoil as a shock generator (numerical and experimental), and (c) a Mach 2.0 nozzle flow case in a simulated 15 X 15 cm wind tunnel with a shock generator (numerical). Numerical studies were performed for all three test cases to examine the feasibility of plasma flow control concepts. These results were used to guide the wind tunnel experiments conducted on the Mach 1.5 12 degree wedge flow (case a) and the Mach 1.5 impinging shock test case (case b) which were at similar flow conditions as the corresponding numerical studies to obtain experimental evidence of plasma control effects for SBLI control. The experiments also generated data that were used in validating the numerical studies for the baseline cases (without plasma actuators). The experiments were conducted in a Mach 1.5 test section in the University of Notre Dame Hessert Laboratory. The simulation results from cases a and b indicated that multiple spanwise actuators in series and at a voltage of 75 kVp-p could fully suppress the flow separation downstream of the shock. The simulation results from case c showed that the streamwise plasma actuators are highly effective in creating pairs of counter-rotating vortices, much like the mechanical vortex generators, and could also potentially have beneficial effects for SBLI control. However, to achieve these effects, the positioning and the quantity of the DBD actuators used must be optimized. The wind tunnel experiments mapped the baseline flow with good agreement to the numerical simulations. The experimental results were conducted with spanwise actuators for cases a and b, but were limited by the inability to generate a sufficiently high voltage due to arcing in the wind-tunnel test-section. The static pressure in the tunnel was lower than the static pressure in an inlet at flight conditions, promoting arching and degrading the actuator performance

    e-Premier

    Full text link

    Outplayed: Regaining Strategic Initiative in the Gray Zone, A Report Sponsored by the Army Capabilities Integration Center in Coordination with Joint Staff J-39/Strategic Multi-Layer Assessment Branch

    Get PDF
    U.S. competitors pursuing meaningful revision or rejection of the current U.S.-led status quo are employing a host of hybrid methods to advance and secure interests contrary to those of the United States. These challengers employ unique combinations of influence, intimidation, coercion, and aggression to incrementally crowd out effective resistance, establish local or regional advantage, and manipulate risk perceptions in their favor. So far, the United States has not come up with a coherent countervailing approach. It is in this “gray zone”—the awkward and uncomfortable space between traditional conceptions of war and peace—where the United States and its defense enterprise face systemic challenges to U.S. position and authority. Gray zone competition and conflict present fundamental challenges to U.S. and partner security and, consequently, should be important pacers for U.S. defense strategy.https://press.armywarcollege.edu/monographs/1924/thumbnail.jp

    Differences in adolescent activity and dietary behaviors across home, school, and other locations warrant location-specific intervention approaches

    Get PDF
    Background Investigation of physical activity and dietary behaviors across locations can inform “setting-specific” health behavior interventions and improve understanding of contextual vulnerabilities to poor health. This study examined how physical activity, sedentary time, and dietary behaviors differed across home, school, and other locations in young adolescents. Methods Participants were adolescents aged 12–16 years from the Baltimore-Washington, DC and the Seattle areas from a larger cross-sectional study. Participants (n = 472) wore an accelerometer and Global Positioning Systems (GPS) tracker (Mean days = 5.12, SD = 1.62) to collect location-based physical activity and sedentary data. Participants (n = 789) completed 24-h dietary recalls to assess dietary behaviors and eating locations. Spatial analyses were performed to classify daily physical activity, sedentary time patterns, and dietary behaviors by location, categorized as home, school, and “other” locations. Results Adolescents were least physically active at home (2.5 min/hour of wear time) and school (2.9 min/hour of wear time) compared to “other” locations (5.9 min/hour of wear time). Participants spent a slightly greater proportion of wear time in sedentary time when at school (41 min/hour of wear time) than at home (39 min/hour of wear time), and time in bouts lasting ≥30 min (10 min/hour of wear time) and mean sedentary bout duration (5 min) were highest at school. About 61% of daily energy intake occurred at home, 25% at school, and 14% at “other” locations. Proportionately to energy intake, daily added sugar intake (5 g/100 kcal), fruits and vegetables (0.16 servings/100 kcal), high calorie beverages (0.09 beverages/100 kcal), whole grains (0.04 servings/100 kcal), grams of fiber (0.65 g/100 kcal), and calories of fat (33 kcal/100 kcal) and saturated fat (12 kcal/100 kcal) consumed were nutritionally least favorable at “other” locations. Daily sweet and savory snacks consumed was highest at school (0.14 snacks/100 kcal). Conclusions Adolescents’ health behaviors differed based on the location/environment they were in. Although dietary behaviors were generally more favorable in the home and school locations, physical activity was generally low and sedentary time was higher in these locations. Health behavior interventions that address the multiple locations in which adolescents spend time and use location-specific behavior change strategies should be explored to optimize health behaviors in each location

    SN 2012fr: Ultraviolet, Optical, and Near-infrared Light Curves of a Type Ia Supernova Observed within a Day of Explosion

    Get PDF
    We present detailed ultraviolet, optical, and near-infrared light curves of the Type Ia supernova (SN) 2012fr, which exploded in the Fornax cluster member NGC 1365. These precise high-cadence light curves provide a dense coverage of the flux evolution from −12 to +140 days with respect to the epoch of B-band maximum (tBmax). Supplementary imaging at the earliest epochs reveals an initial slow and nearly linear rise in luminosity with a duration of ∼2.5 days, followed by a faster rising phase that is well reproduced by an explosion model with a moderate amount of 56Ni mixing in the ejecta. From our analysis of the light curves, we conclude that: (i) the explosion occurred 1800 Å) luminosity was 16.5 ± 0.6 days, (iii) the supernova suffered little or no host-galaxy dust reddening, (iv) the peak luminosity in both the optical and near-infrared was consistent with the bright end of normal Type Ia diversity, and (v) 0.60 ± 0.15 M⊙ of 56Ni was synthesized in the explosion. Despite its normal luminosity, SN 2012fr displayed unusually prevalent high-velocity Ca II and Si II absorption features, and a nearly constant photospheric velocity of the Si II λ6355 line at ∼12,000 km s-1 that began ∼5 days before tBmax. We also highlight some of the other peculiarities in the early phase photometry and the spectral evolution. SN 2012fr also adds to a growing number of Type Ia supernovae that are hosted by galaxies with direct Cepheid distance measurements.Facultad de Ciencias Astronómicas y GeofísicasInstituto de Astrofísica de La Plat

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3 and reports on twenty research projects.Charles S. Draper Laboratories Contract DL-H-467138Joint Services Electronics Program Contract DAAL03-92-C-0001Joint Services Electronics Program Grant DAAH04-95-1-0038U.S. Air Force - Office of Scientific Research Contract F49620-91-C-0091MIT Lincoln LaboratoryNational Science Foundation Grant ECS 90-12787Fujitsu LaboratoriesNational Center for Integrated PhotonicsHoneywell Technology CenterU.S. Navy - Office of Naval Research (MFEL) Contract N00014-94-1-0717U.S. Navy - Office of Naval Research (MFEL) Grant N00014-91-J-1956National Institutes of Health Grant NIH-5-R01-GM35459-09U.S. Air Force - Office of Scientific Research Grant F49620-93-1-0301MIT Lincoln Laboratory Contract BX-5098Electric Power Research Institute Contract RP3170-25ENEC

    Operant Sensation Seeking Requires Metabotropic Glutamate Receptor 5 (mGluR5)

    Get PDF
    Pharmacological and genetic studies have suggested that the metabotropic glutamate receptor 5 (mGluR5) is critically involved in mediating the reinforcing effects of drugs of abuse, but not food. The purpose of this study was to use mGluR5 knockout (KO), heterozygous (Het), and wildtype (WT) mice to determine if mGluR5 modulates operant sensation seeking (OSS), an operant task that uses varied sensory stimuli as a reinforcer. We found that mGluR5 KO mice had significantly reduced OSS responding relative to WT mice, while Het mice displayed a paradoxical increase in OSS responding. Neither KO nor Het mice exhibited altered operant responding for food as a reinforcer. Further, we assessed mGluR5 KO, Het and WT mice across a battery of cocaine locomotor, place preference and anxiety related tests. Although KO mice showed expected differences in some locomotor and anxiety measures, Het mice either exhibited no phenotype or an intermediate one. In total, these data demonstrate a key role for mGluR5 in OSS, indicating an important role for this receptor in reinforcement-based behavior

    Rac Inhibition Reverses the Phenotype of Fibrotic Fibroblasts

    Get PDF
    Background: Fibrosis, the excessive deposition of scar tissue by fibroblasts, is one of the largest groups of diseases for which there is no therapy. Fibroblasts from lesional areas of scleroderma patients possess elevated abilities to contract matrix and produce alpha-smooth muscle actin (alpha-SMA), type I collagen and CCN2 (connective tissue growth factor, CTGF). The basis for this phenomenon is poorly understood, and is a necessary prerequisite for developing novel, rational anti-fibrotic strategies.Methods and Findings: Compared to healthy skin fibroblasts, dermal fibroblasts cultured from lesional areas of scleroderma (SSc) patients possess elevated Rac activity. NSC23766, a Rac inhibitor, suppressed the persistent fibrotic phenotype of lesional SSc fibroblasts. NSC23766 caused a decrease in migration on and contraction of matrix, and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. SSc fibroblasts possessed elevated Akt phosphorylation, which was also blocked by NSC23766. Overexpression of rac1 in normal fibroblasts induced matrix contraction and alpha-SMA, type I collagen and CCN2 mRNA and protein expression. Rac1 activity was blocked by PI3kinase/Akt inhibition. Basal fibroblast activity was not affected by NSC23766.Conclusion: Rac inhibition may be considered as a novel treatment for the fibrosis observed in SSc

    Optics and Quantum Electronics

    Get PDF
    Contains table of contents for Section 3 and reports on eighteen research projects.Defense Advanced Research Projects Agency/MIT Lincoln Laboratory Contract MDA972-92-J-1038Joint Services Electronics Program Grant DAAH04-95-1-0038National Science Foundation Grant ECS 94-23737U.S. Air Force - Office of Scientific Research Contract F49620-95-1-0221U.S. Navy - Office of Naval Research Grant N00014-95-1-0715MIT Center for Material Science and EngineeringNational Center for Integrated Photonics Technology Contract DMR 94-00334National Center for Integrated Photonics TechnologyU.S. Navy - Office of Naval Research (MFEL) Contract N00014-94-1-0717National Institutes of Health Grant 9-R01-EY11289MIT Lincoln Laboratory Contract BX-5098Electric Power Research Institute Contract RP3170-25ENEC
    corecore