12 research outputs found

    Observational issues in loop quantum cosmology

    Full text link
    Quantum gravity is sometimes considered as a kind of metaphysical speculation. In this review, we show that, although still extremely difficult to reach, observational signatures can in fact be expected. The early universe is an invaluable laboratory to probe "Planck scale physics". Focusing on Loop Quantum Gravity as one of the best candidate for a non-perturbative and background-independant quantization of gravity, we detail some expected features.Comment: 75 pages, invited topical review for Classical and Quantum Gravit

    Anomaly-free vector perturbations with holonomy corrections in loop quantum cosmology

    Full text link
    We investigate vector perturbations with holonomy corrections in the framework of loop quantum cosmology. Conditions to achieve anomaly freedom for these perturbations are found at all orders. This requires the introduction of counter-terms in the hamiltonian constraint. We also show that anomaly freedom requires the diffeomorphism constraint to hold its classical form when scalar matter is added although the issue of a vector matter source, required for full consistency, remains to be investigated. The gauge-invariant variable and the corresponding equation of motion are derived. The propagation of vector modes through the bounce is finally discussed.Comment: 16 pages, 1 figure. Matches version published in Class. Quantum Gra

    A no-singularity scenario in loop quantum gravity

    Full text link
    Canonical methods allow the derivation of effective gravitational actions from the behavior of space-time deformations reflecting general covariance. With quantum effects, the deformations and correspondingly the effective actions change, revealing dynamical implications of quantum corrections. A new systematic way of expanding these actions is introduced showing as a first result that inverse-triad corrections of loop quantum gravity simplify the asymptotic dynamics near a spacelike collapse singularity. By generic quantum effects, the singularity is removed.Comment: 10 page

    Spherically symmetric Einstein-Maxwell theory and loop quantum gravity corrections

    Full text link
    Effects of inverse triad corrections and (point) holonomy corrections, occuring in loop quantum gravity, are considered on the properties of Reissner-Nordstr\"om black holes. The version of inverse triad corrections with unmodified constraint algebra reveals the possibility of occurrence of three horizons (over a finite range of mass) and also shows a mass threshold beyond which the inner horizon disappears. For the version with modified constraint algebra, coordinate transformations are no longer a good symmetry. The covariance property of spacetime is regained by using a \emph{quantum} notion of mapping from phase space to spacetime. The resulting quantum effects in both versions of these corrections can be associated with renormalization of either mass, charge or wave function. In neither of the versions, Newton's constant is renormalized. (Point) Holonomy corrections are shown to preclude the undeformed version of constraint algebra as also a static solution, though time-independent solutions exist. A possible reason for difficulty in constructing a covariant metric for these corrections is highlighted. Furthermore, the deformed algebra with holonomy corrections is shown to imply signature change.Comment: 38 pages, 9 figures, matches published versio

    Loop quantum gravity: the first twenty five years

    Full text link
    This is a review paper invited by the journal "Classical ad Quantum Gravity" for a "Cluster Issue" on approaches to quantum gravity. I give a synthetic presentation of loop gravity. I spell-out the aims of the theory and compare the results obtained with the initial hopes that motivated the early interest in this research direction. I give my own perspective on the status of the program and attempt of a critical evaluation of its successes and limits.Comment: 24 pages, 3 figure

    Observing the Big Bounce with tensor modes in the cosmic microwave background: phenomenology and fundamental loop quantum cosmology parameters

    No full text
    12 pages, 5 figuresCosmological models where the standard Big Bang is replaced by a bounce have been studied for decades. The situation has however dramatically changed in the last years for two reasons. First, because new ways to probe the early Universe have emerged, in particular thanks to the Cosmic Microwave Background (CMB). Second, because some well grounded theories -- especially Loop Quantum Cosmology -- unambiguously predict a bounce, at least for homogeneous models. In this article, we investigate into the details the phenomenological parameters that could be constrained or measured by next-generation B-mode CMB experiments. We point out that an important observational window could be opened. We then show that those constraints can be converted into very meaningful limits on the fundamental Loop Quantum Cosmology (LQC) parameters. This establishes the early universe as an invaluable quantum gravity laboratory

    Some phenomenological aspects of Loop Quantum Cosmology

    No full text
    The proceedings of Loops 11 conference will be published in Journal of Physics: Conference Series. (JPCS)
    corecore