106 research outputs found

    Advanced progress in recycling municipal and construction solid wastes for manufacturing sustainable construction materials

    Get PDF
    The sharply increasing solid waste generation has raised the environmental concerns worldwide which currently have been escalated to a worrying level. Intending to eliminate the negative environmental impacts of solid waste and meanwhile promote sustainability on the energy- and resource-intensive construction and building sector, considerable efforts have been devoted to recycling solid waste for the possible use in sustainable construction material products. This paper reviews the existing studies on recycling municipal and construction solid waste for the manufacture of geopolymer composites. Special attention is paid to the predominate performance of these geopolymer composite products. The principal findings of this work reveal that municipal and construction solid waste could be successfully incorporated into geopolymer composites in the forms of precursor, aggregate, additive, reinforcement fiber, or filling material. Additionally, the results indicate that although the inclusion of such waste might depress some of the attributes of geopolymer composites, proper proportion design and suitable treatment technique could alleviate these detrimental effects and further smooth the recycling progress. Finally, a brief discussion is provided to identify the important needs in the future research and development for promoting the utilization of solid waste materials in the forthcoming sustainable geopolymer industry. In summary, this work offers guidance for the better ecological choice to municipal and construction solid waste through developing waste materials into highly environmental-friendly construction materials

    A One-Dimensional Hydrodynamic and Water Quality Model for a Water Transfer Project with Multihydraulic Structures

    Get PDF
    The long Middle Route of the South to North Water Transfer Project is composed of complex hydraulic structures (aqueduct, tunnel, control gate, diversion, culvert, and diverted siphon), which generate complex flow patterns. It is vital to simulate the flow patterns through hydraulic structures, but it is a challenging work to protect water quality and maintain continuous water transfer. A one-dimensional hydrodynamic and water quality model was built to understand the flow and pollutant movement in this project. Preissmann four-point partial-node implicit scheme was used to solve the governing equations in this study. Water flow and pollutant movement were appropriately simulated and the results indicated that this water quality model was comparable to MIKE 11 and had a good performance and accuracy. Simulation accuracy and model uncertainty were analyzed. Based on the validated water quality model, six pollution scenarios (Q1 = 10 m3/s, Q2 = 30 m3/s, and Q3 = 60 m3/s for volatile phenol (VOP) and contaminant mercury (Hg)) were simulated for the MRP. Emergent pollution accidents were forecasted and changes of water quality were analyzed according to the simulations results, which helped to guarantee continuously transferring water for a large water transfer project

    Genetic Susceptibility to Vitiligo: GWAS Approaches for Identifying Vitiligo Susceptibility Genes and Loci

    Get PDF
    Vitiligo is an autoimmune disease with a strong genetic component, characterized by areas of depigmented skin resulting from loss of epidermal melanocytes. Genetic factors are known to play key roles in vitiligo through discoveries in association studies and family studies. Previously, vitiligo susceptibility genes were mainly revealed through linkage analysis and candidate gene studies. Recently, our understanding of the genetic basis of vitiligo has been rapidly advancing through genome-wide association study (GWAS). More than 40 robust susceptible loci have been identified and confirmed to be associated with vitiligo by using GWAS. Most of these associated genes participate in important pathways involved in the pathogenesis of vitiligo. Many susceptible loci with unknown functions in the pathogenesis of vitiligo have also been identified, indicating that additional molecular mechanisms may contribute to the risk of developing vitiligo. In this review, we summarize the key loci that are of genome-wide significance, which have been shown to influence vitiligo risk. These genetic loci may help build the foundation for genetic diagnosis and personalize treatment for patients with vitiligo in the future. However, substantial additional studies, including gene-targeted and functional studies, are required to confirm the causality of the genetic variants and their biological relevance in the development of vitiligo

    Epigenome-wide association data implicates DNA methylation-mediated genetic risk in psoriasis

    Get PDF
    Abstract Background Psoriasis is a chronic inflammatory skin disease characterized by epidermal hyperproliferation and altered keratinocyte differentiation and inflammation and is caused by the interplay of genetic and environmental factors. Previous studies have revealed that DNA methylation (DNAm) and genetic makers are closely associated with psoriasis, and strong evidences have shown that DNAm can be controlled by genetic factors, which attracted us to evaluate the relationship among DNAm, genetic makers, and disease status. Methods We utilized the genome-wide methylation data of psoriatic skin (PP, N = 114) and unaffected control skin (NN, N = 62) tissue samples in our previous study, and we performed whole-genome genotyping with peripheral blood of the same samples to evaluate the underlying genetic effect on skin DNA methylation. Causal inference test (CIT) was used to assess whether DNAm regulate genetic variation and gain a better understanding of the epigenetic basis of psoriasis susceptibility. Results We identified 129 SNP-CpG pairs achieving the significant association threshold, which constituted 28 unique methylation quantitative trait loci (MethQTL) and 34 unique CpGs. There are 18 SNPs were associated with psoriasis at a Bonferoni-corrected P < 0.05, and these 18 SNPs formed 93 SNP-CpG pairs with 17 unique CpG sites. We found that 11 of 93 SNP-CpG pairs, composed of 5 unique SNPs and 3 CpG sites, presented a methylation-mediated relationship between SNPs and psoriasis. The 3 CpG sites were located on the body of C1orf106, the TSS1500 promoter region of DMBX1 and the body of SIK3. Conclusions This study revealed that DNAm of some genes can be controlled by genetic factors and also mediate risk variation for psoriasis in Chinese Han population and provided novel molecular insights into the pathogenesis of psoriasis

    Magnetic PiezoBOTs: a microrobotic approach for targeted amyloid protein dissociation

    Full text link
    Piezoelectric nanomaterials have become increasingly popular in the field of biomedical applications due to their high biocompatibility and ultrasound-mediated piezocatalytic properties. In addition, the ability of these nanomaterials to disaggregate amyloid proteins, which are responsible for a range of diseases resulting from the accumulation of these proteins in body tissues and organs, has recently gained considerable attention. However, the use of nanoparticles in biomedicine poses significant challenges, including targeting and uncontrolled aggregation. To address these limitations, our study proposes to load these functional nanomaterials on a multifunctional mobile microrobot This microrobot is designed by coating magnetic and piezoelectric barium titanate nanoparticles on helical biotemplates, allowing for the combination of magnetic navigation and ultrasound-mediated piezoelectric effects to target amyloid disaggregation. Our findings demonstrate that acoustically actuated PiezoBOTs can effectively reduce the size of aggregated amyloid proteins by over 80% in less than 10 minutes by shortening and dissociating constituent amyloid fibrils. Moreover, the PiezoBOTs can be easily magnetically manipulated to actuate the piezocatalytic nanoparticles to specific amyloidosis-affected tissues or organs, minimizing side effects. These biocompatible PiezoBOTs offer a promising non-invasive therapeutic approach for amyloidosis diseases by targeting and breaking down protein aggregates at specific organ or tissue sites

    Glucagon-like peptide-1 and its class B G protein-coupled receptors: A long march to therapeutic successes

    Get PDF
    Theglucagon-likepeptide (GLP)-1receptor (GLP-1R) is a class B G protein-coupled receptor (GPCR) that mediates the action of GLP-1, a peptide hormone secretedfromthreemajor tissues inhumans,enteroendocrine L cells in the distal intestine, a cells in the pancreas, and the central nervous system, which exerts important actions useful in the management of type 2 diabetes mellitus and obesity, including glucose homeostasis and regulation of gastric motility and food intake. Peptidic analogs of GLP-1 have been successfully developed with enhanced bioavailability and pharmacological activity. Physiologic and biochemical studies with truncated, chimeric, and mutated peptides and GLP-1R variants, together with ligand-bound crystal structures of the extracellular domain and the first three-dimensional structures of the 7-helical transmembrane domain of class B GPCRs, have provided the basis for a twodomain-binding mechanism of GLP-1 with its cognate receptor. Although efforts in discovering therapeutically viable nonpeptidicGLP-1R agonists have been hampered, small-moleculemodulators offer complementary chemical tools to peptide analogs to investigate ligand-directed biased cellular signaling of GLP-1R. The integrated pharmacological and structural information of different GLP-1 analogs and homologous receptors give new insights into the molecular determinants of GLP-1R ligand selectivity and functional activity, thereby providing novel opportunities in the design and development of more efficacious agents to treat metabolic disorders

    Detection of copy number variations in rice using array-based comparative genomic hybridization

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Copy number variations (CNVs) can create new genes, change gene dosage, reshape gene structures, and modify elements regulating gene expression. As with all types of genetic variation, CNVs may influence phenotypic variation and gene expression. CNVs are thus considered major sources of genetic variation. Little is known, however, about their contribution to genetic variation in rice.</p> <p>Results</p> <p>To detect CNVs, we used a set of NimbleGen whole-genome comparative genomic hybridization arrays containing 718,256 oligonucleotide probes with a median probe spacing of 500 bp. We compiled a high-resolution map of CNVs in the rice genome, showing 641 CNVs between the genomes of the rice cultivars 'Nipponbare' (from <it>O. sativa </it>ssp. <it>japonica</it>) and 'Guang-lu-ai 4' (from <it>O. sativa </it>ssp. <it>indica</it>). The CNVs identified vary in size from 1.1 kb to 180.7 kb, and encompass approximately 7.6 Mb of the rice genome. The largest regions showing copy gain and loss are of 37.4 kb on chromosome 4, and 180.7 kb on chromosome 8. In addition, 85 DNA segments were identified, including some genic sequences. Contracted genes greatly outnumbered duplicated ones. Many of the contracted genes corresponded to either the same genes or genes involved in the same biological processes; this was also the case for genes involved in disease and defense.</p> <p>Conclusion</p> <p>We detected CNVs in rice by array-based comparative genomic hybridization. These CNVs contain known genes. Further discussion of CNVs is important, as they are linked to variation among rice varieties, and are likely to contribute to subspecific characteristics.</p

    Histological and transcriptome-wide level characteristics of fetal myofiber hyperplasia during the second half of gestation in Texel and Ujumqin sheep

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Whether myofibers increase with a pulsed-wave mode at particular developmental stages or whether they augment evenly across developmental stages in large mammals is unclear. Additionally, the molecular mechanisms of myostatin in myofiber hyperplasia at the fetal stage in sheep remain unknown. Using the first specialized transcriptome-wide sheep oligo DNA microarray and histological methods, we investigated the gene expression profile and histological characteristics of developing fetal ovine longissimus muscle in Texel sheep (high muscle and low fat), as a myostatin model of natural mutation, and Ujumqin sheep (low muscle and high fat). Fetal skeletal muscles were sampled at 70, 85, 100, 120, and 135 d of gestation.</p> <p>Results</p> <p>Myofiber number increased sharply with a pulsed-wave mode at certain developmental stages but was not augmented evenly across developmental stages in fetal sheep. The surges in myofiber hyperplasia occurred at 85 and 120 d in Texel sheep, whereas a unique proliferative surge appeared at 100 d in Ujumqin sheep. Analysis of the microarray demonstrated that immune and hematological systems' development and function, lipid metabolism, and cell communication were the biological functions that were most differentially expressed between Texel and Ujumqin sheep during muscle development. Pathways associated with myogenesis and the proliferation of myoblasts, such as calcium signaling, chemokine (C-X-C motif) receptor 4 signaling, and vascular endothelial growth factor signaling, were affected significantly at specific fetal stages, which underpinned fetal myofiber hyperplasia and postnatal muscle hypertrophy. Moreover, we identified some differentially expressed genes between the two breeds that could be potential myostatin targets for further investigation.</p> <p>Conclusions</p> <p>Proliferation of myofibers proceeded in a pulsed-wave mode at particular fetal stages in the sheep. The myostatin mutation changed the gene expression pattern in skeletal muscle at a transcriptome-wide level, resulting in variation in myofiber phenotype between Texel and Ujumqin sheep during the second half of gestation. Our findings provide a novel and dynamic description of the effect of myostatin on skeletal muscle development, which contributes to understanding the biology of muscle development in large mammals.</p
    corecore