144 research outputs found

    Encapsulation of a {Cu16} cluster containing four [Cu4O4] cubanes within an isopolyoxometalate {W44} cluster

    Get PDF
    We report a {Cu16} embedded within a {W44} cluster containing four cubane-like [Cu4O4] units within an isopolyoxotungstate (isoPOT) in a {Na4Cu4[(H2W11O38) (CH3COO)(OH)3]}4·88H2O (1) and a polyanion Cu-linked {W11} chain Na6Cu2[(H2W11O38)(CH3COO)(OH)]·26H2O (2). Electronically, the redox properties show that both compounds 1 and 2 undergo irreversible reductions resulting in the demetalation of the compounds, whilst the magnetic behavior of 1 and 2 shows a weak antiferromagnetic and a stronger ferromagnetic coupling, respectively

    Soil respiration in cucumber field under crop rotation in solar greenhouse

    Get PDF
    Crop residues are the primary source of carbon input in the soil carbon pool. Crop rotation can impact the plant biomass returned to the soil, and influence soil respiration. To study the effect of previous crops on soil respiration in cucumber (Cucumis statirus L.) fields in solar greenhouses, soil respiration, plant height, leaf area and yield were measured during the growing season (from the end of Sept to the beginning of Jun the following year) from 2007 to 2010. The cucumber was grown following fallow (CK), kidney bean (KB), cowpea (CP), maize for green manure (MGM), black bean for green manure (BGM), tomato (TM), bok choy (BC). As compared with CK, KB, CP, MGM and BGM may increase soil respiration, while TM and BC may decrease soil respiration at full fruit stage in cucumber fields. Thus attention to the previous crop arrangement is a possible way of mitigating soil respiration in vegetable fields. Plant height, leaf area and yield had similar variation trends under seven previous crop treatments. The ratio of yield to soil respiration revealed that MGM is the crop of choice previous to cucumber when compared with CK, KB, CP, BGM, TM and BC

    Implications of C1q/TNF-related protein superfamily in patients with coronary artery disease.

    Get PDF
    The C1q complement/TNF-related protein superfamily (CTRPs) displays differential effects on the regulation of metabolic homeostasis, governing cardiovascular function. However, whether and how they may serve as predictor/pro-diagnosis factors for assessing the risks of coronary artery disease (CAD) remains controversial. Therefore, we performed a clinical study to elaborate on the implication of CTRPs (CTRP1, CTRP5, CTRP7, and CTRP15) in CAD. CTRP1 were significantly increased, whereas CTRP7 and CTRP15 levels were decreased in CAD patients compared to the non-CAD group. Significant differences in CTRP1 levels were discovered between the single- and triple-vascular-vessel lesion groups. ROC analysis revealed that CTRP7 and CTRP15 may serve as CAD markers, while CTRP1 may serve as a marker for the single-vessel lesion of CAD. CTRP1 and CTRP5 can serve as markers for the triple-vessel lesion. CTRP1 may serve as an independent risk predictor for triple-vessel lesion, whereas CTRP15 alteration may serve for a single-vessel lesion of CAD. CTRP1 may serve as a novel superior biomarker for diagnosis of severity of vessel-lesion of CAD patients. CTRP7, CTRP15 may serve as more suitable biomarker for the diagnosis of CAD patients, whereas CTRP5 may serve as an independent predictor for CAD. These findings suggest CTRPs may be the superior predictive factors for the vascular lesion of CAD and represent novel therapeutic targets against CAD

    A metamorphic inorganic framework that can be switched between eight single-crystalline states

    Get PDF
    The design of highly flexible framework materials requires organic linkers, whereas inorganic materials are more robust but inflexible. Here, by using linkable inorganic rings made up of tungsten oxide (P8W48O184) building blocks, we synthesized an inorganic single crystal material that can undergo at least eight different crystal-to-crystal transformations, with gigantic crystal volume contraction and expansion changes ranging from −2,170 to +1,720 Å3 with no reduction in crystallinity. Not only does this material undergo the largest single crystal-to-single crystal volume transformation thus far reported (to the best of our knowledge), the system also shows conformational flexibility while maintaining robustness over several cycles in the reversible uptake and release of guest molecules switching the crystal between different metamorphic states. This material combines the robustness of inorganic materials with the flexibility of organic frameworks, thereby challenging the notion that flexible materials with robustness are mutually exclusive

    Chaotic Path Planner of Autonomous Mobile Robots Based on the Standard Map for Surveillance Missions

    Get PDF
    This paper proposes a fusion iterations strategy based on the Standard map to generate a chaotic path planner of the mobile robot for surveillance missions. The distances of the chaotic trajectories between the adjacent iteration points which are produced by the Standard map are too large for the robot to track. So a fusion iterations strategy combined with the large region iterations and the small grids region iterations is designed to resolve the problem. The small region iterations perform the iterations of the Standard map in the divided small grids, respectively. It can reduce the adjacent distances by dividing the whole surveillance workspace into small grids. The large region iterations combine all the small grids region iterations into a whole, switch automatically among the small grids, and maintain the chaotic characteristics of the robot to guarantee the surveillance missions. Compared to simply using the Standard map in the whole workspace, the proposed strategy can decrease the adjacent distances according to the divided size of the small grids and is convenient for the robot to track

    Reproductive Outcomes of In Vitro Fertilization and Fresh Embryo Transfer in Infertile Women With Adenomyosis: A Retrospective Cohort Study

    Get PDF
    BackgroundAdenomyosis is commonly encountered in infertile women; however, it is still unclear whether adenomyosis has a detrimental effect on in vitro fertilization and embryo transfer (IVF-ET) outcomes.MethodWe enrolled 1146 patients with adenomyosis and 1146 frequency-matched control women in a 1:1 ratio based on age, BMI, and basal follicle-stimulating hormone (FSH) level. After controlling for other factors, the rates of clinical pregnancy, miscarriage, live birth, and obstetric complications were compared between two groups.ResultsThere was no significant difference in clinical pregnancy rate between the two groups (38.1% vs. 41.6%; P=0.088). The implantation rate (25.6% versus 28.6%, P=0.027) and live birth rate (26% versus 31.5%, P=0.004) were significantly lower in the women with adenomyosis than in the controls. The miscarriage rate in the adenomyosis group was higher than that in the control group (29.1% versus 17.2%, P=0.001). After adjusting for confounding factors, multivariate analysis showed the clinical pregnancy rate was not statistically different between the two groups (OR: 0.852, P=0.070). In the adenomyosis group, the rate of miscarriage(OR: 1.877, P=0.000), placenta previa (OR: 2.996, P=0.042)and preeclampsia (OR: 2.287, P=0.042)were increased significantly, while live birth rate (OR: 0.541, P=0.000) was reduced significantly than control group.ConclusionAdenomyosis has negative effect on IVF-ET outcomes in which miscarriage risk increased, live birth rate reduced and obstetric complications increased

    Nicotine aggravates vascular adiponectin resistance via ubiquitin-mediated adiponectin receptor degradation in diabetic Apolipoprotein E knockout mouse

    Get PDF
    There is limited and discordant evidence on the role of nicotine in diabetic vascular disease. Exacerbated endothelial cell dysregulation in smokers with diabetes is associated with the disrupted adipose function. Adipokines possess vascular protective, anti-inflammatory, and anti-diabetic properties. However, whether and how nicotine primes and aggravates diabetic vascular disorders remain uncertain. In this study, we evaluated the alteration of adiponectin (APN) level in high-fat diet (HFD) mice with nicotine (NIC) administration. The vascular pathophysiological response was evaluated with vascular ring assay. Confocal and co-immunoprecipitation analysis were applied to identify the signal interaction and transduction. These results indicated that the circulating APN level in nicotine-administrated diabetic Apolipoprotein E-deficient (ApoE−/−) mice was elevated in advance of 2 weeks of diabetic ApoE−/− mice. NIC and NIC addition in HFD groups (NIC + HFD) reduced the vascular relaxation and signaling response to APN at 6 weeks. Mechanistically, APN receptor 1 (AdipoR1) level was decreased in NIC and further significantly reduced in NIC + HFD group at 6 weeks, while elevated suppressor of cytokine signaling 3 (SOCS3) expression was induced by NIC and further augmented in NIC + HFD group. Additionally, nicotine provoked SOCS3, degraded AdipoR1, and attenuated APN-activated ERK1/2 in the presence of high glucose and high lipid (HG/HL) in human umbilical vein endothelial cells (HUVECs). MG132 (proteasome inhibitor) administration manifested that AdipoR1 was ubiquitinated, while inhibited SOCS3 rescued the reduced AdipoR1. In summary, this study demonstrated for the first time that nicotine primed vascular APN resistance via SOCS3-mediated degradation of ubiquitinated AdipoR1, accelerating diabetic endothelial dysfunction. This discovery provides a potential therapeutic target for preventing nicotine-accelerated diabetic vascular dysfunction

    C1q complement/tumor necrosis factor-associated proteins in cardiovascular disease and covid-19

    Get PDF
    With continually improving treatment strategies and patient care, the overall mortality of cardiovascular disease (CVD) has been significantly reduced. However, this success is a double-edged sword, as many patients who survive cardiovascular complications will progress towards a chronic disorder over time. A family of adiponectin paralogs designated as C1q complement/tumor necrosis factor (TNF)-associated proteins (CTRPs) has been found to play a role in the development of CVD. CTRPs, which are comprised of 15 members, CTRP1 to CTRP15, are secreted from different organs/tissues and exhibit diverse functions, have attracted increasing attention because of their roles in maintaining inner homeostasis by regulating metabolism, inflammation, and immune surveillance. In particular, studies indicate that CTRPs participate in the progression of CVD, influencing its prognosis. This review aims to improve understanding of the role of CTRPs in the cardiovascular system by analyzing current knowledge. In particular, we examine the association of CTRPs with endothelial cell dysfunction, inflammation, and diabetes, which are the basis for development of CVD. Additionally, the recently emerged novel coronavirus (COVID-19), officially known as severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2), has been found to trigger severe cardiovascular injury in some patients, and evidence indicates that the mortality of COVID-19 is much higher in patients with CVD than without CVD. Understanding the relationship of CTRPs and the SARS-CoV-2-related damage to the cardiovascular system, as well as the potential mechanisms, will achieve a profound insight into a therapeutic strategy to effectively control CVD and reduce the mortality rate
    • …
    corecore