9 research outputs found

    Remote ischemic preconditioning confers late protection against myocardial ischemia-reperfusion injury in mice by upregulating interleukin-10

    No full text
    Abstract Remote ischemic preconditioning (RIPC) induces a prolonged late phase of multi-organ protection against ischemia-reperfusion (IR) injury. In the present study, we tested the hypothesis that RIPC confers late protection against myocardial IR injury by upregulating expression of interleukin (IL)-10. Mice were exposed to lower limb RIPC or sham ischemia. After 24 h, mice with RIPC demonstrated decreased myocardial infarct size and improved cardiac contractility following 30-min ischemia and 120-min reperfusion (I-30/R-120). These effects of RIPC were completely blocked by anti-IL-10 receptor antibodies

    Ischemic preconditioning-induced cardioprotection is lost in mice with immunoproteasome subunit low molecular mass polypeptide-2 deficiency

    No full text
    The ubiquitin-proteasome system plays an important role in many cellular processes through degradation of specific proteins. Low molecular mass polypeptide 2 (LMP-2 or β1i) is one important subunit of the immunoproteasome. Ischemic preconditioning (IPC) activates cell signaling pathways and generates cardioprotection but has not been linked to LMP-2 function previously. LMP-2 knockout mice (C57BL6 background) and wild-type C57BL6 mice were subjected to 30 min of ischemia (I-30) and 120 min of reperfusion (R-120) with or without preceding IPC (10 min of infusion and 5 min of reperfusion). IPC significantly increased left ventricular developed pressure and decreased infarct size in wild-type mice, but this protective effect of IPC was lost in LMP-2 knockout mice. IPC-mediated degradation of phosphatase and tensin homologue deleted on chromosome 10 (PTEN) and activation of the downstream protein kinase Akt were impaired in LMP-2 knockout hearts. The impairment of PTEN degradation was associated with defective immunoproteasomes and decreased proteolytic activities. When LMP-2 knockout mice were pretreated with the PTEN inhibitor bpV(HOpic), cardiac function was significantly improved, and myocardial infarct size was significantly reduced after I-30/R-120. In conclusion, LMP-2 is required for normal proteasomal function and IPC induction in the heart. Its action may be related to PTEN protein degradation.—Cai, Z. P., Shen, Z., Van Kaer, L., Becker, L. C. Ischemic preconditioning-induced cardioprotection is lost in mice with immunoproteasome subunit low molecular mass polypeptide-2 deficiency

    Phosphatase PTEN is critically involved in post-myocardial infarction remodeling through the Akt/interleukin-10 signaling pathway

    No full text
    The inflammatory cytokines interleukin (IL)-10 and tumor necrosis factor (TNF)-α play an important role in left ventricular (LV) remodeling after myocardial infarction (MI). Phosphatase and tensin homolog deleted on chromosome ten (PTEN) inactivates protein kinase Akt and promotes cell death in the heart. However, it is not known whether PTEN promotes post-MI remodeling by regulating IL-10 and TNF-α. MI was induced in wild-type (WT) mice and Pten heterozygous mutant (HET) mice. Pten adenoviruses (adPten) or empty vectors (adNull) were injected into the peri-infarct area of WT mice. LV dilation was attenuated and fractional shortening was increased in HET mice compared to WT mice. Survival rate and fractional shortening were decreased in adPten mice compared to adNull mice. Leukocyte infiltration into the peri-infarct area was attenuated in HET mice and worsened in adPten mice. PTEN expression was upregulated in the infarcted heart of WT mice. Partial inactivation of PTEN increased the production of IL-10 and decreased the expression of TNF-α and matrix metalloproteinase (MMP)-2 and -9 after MI in HET mice. PTEN overexpression caused opposite effects in the infarcted heart. Moreover in the infarcted heart of HET mice, Akt inhibition decreased Stat3 phosphorylation and IL-10 expression, and blockade of the IL-10 receptor increased TNF-α and MMP-2 expression. Both Akt inhibition and IL-10 receptor blockade abolished the attenuation of post-MI remodeling in HET mice. In conclusion, PTEN is critically involved in post-MI remodeling through the Akt/IL-10 signaling pathway. Therefore, targeting PTEN may be an effective approach to post-MI remodeling.15 page(s

    Evidence for a role of immunoproteasomes in regulating cardiac muscle mass in diabetic mice

    No full text
    The ubiquitin-proteasome system plays an important role in regulating muscle mass. Inducible immunoproteasome subunits LMP-2 and LMP-7 are constitutively expressed in the heart; however, their regulation and functions are poorly understood. We here investigated the hypothesis that immunoproteasomes regulate cardiac muscle mass in diabetic mice. Type 1 diabetes was induced in wildtype mice by streptozotocin. After hyperglycemia developed, insulin and the proteasome inhibitor epoxomicin were used to treat diabetic mice for 6. weeks. Isolated mouse hearts were perfused with control or high glucose solution. Catalytic proteasome β-subunits and proteolytic activities were analyzed in the heart by immunoblotting and fluorogenic peptide degradation assays, respectively. Insulin and epoxomicin blocked loss of heart weight and improved cardiac function in diabetic mice. LMP-7 and its corresponding chymotryptic-like proteasome activity were increased in diabetic hearts and high glucose-treated hearts. Myosin heavy chain protein was decreased in diabetic hearts, which was largely reversed by epoxomicin. High glucose decreased LMP-2 protein levels in perfused hearts. In diabetic hearts, LMP-2 expression was downregulated whereas expression of the phosphatase and tensin homologue deleted on chromosome ten (PTEN) and the muscle atrophy F-box were upregulated. Moreover, mice with muscle-specific knockout of PTEN gene demonstrated increased cardiac muscle mass, while mice with LMP-2 deficiency demonstrated PTEN accumulation, muscle mass loss, and contractile impairment in the heart. Therefore, we concluded that high glucose regulates immunoproteasome subunits and modifies proteasome activities in the heart, and that dysregulated immunoproteasome subunits may mediate loss of cardiac muscle mass in experimental diabetic mice.11 page(s
    corecore