2,033 research outputs found

    Bayesian CFO estimation in OFDM systems

    Get PDF
    This paper addresses the problem of carrier frequency offset (CFO) estimation in orthogonal frequency division multiplexing (OFDM) systems using Bayesian method. Depending on the availability of the noise variance, two general CFO estimators are derived. Furthermore, the two general maximum a posteriori (MAP) estimators are developed into several special cases based on different degrees of prior information on parameters. The relationships between the proposed estimators and existing estimators are comprehensively investigated. Finally, numerical results demonstrate the effects of employing different prior information on the estimation performances. © 2009 IEEE.published_or_final_versionThe IEEE Conference on Wireless Communications and Networking (WCNC 2009), Budapest, Hungary, 5-8 April 2009. In Proceedings of IEEE WCNC, 2009, p. 1-

    CFO estimation in OFDM systems under timing and channel length uncertainties with model averaging

    Get PDF
    In this letter, we investigate the problem of CFO estimation in OFDM systems when the timing offset and channel length are not exactly known. Instead of explicitly estimating the timing offset and channel length, we employ a multi-model approach, where the timing offset and channel length can take multiple values with certain probabilities. The effect of multimodel is directly incorporated into the CFO estimator. Results show that the proposed estimator outperforms the estimator selecting only the most probable model and the method taking the maximal model. © 2006 IEEE.published_or_final_versio

    Improved keratinase production for feather degradation by Bacillus licheniformis ZJUEL31410 in submerged cultivation

    Get PDF
    Optimal medium was used to improve the production of keratinase by Bacillus licheniformis ZJUEL31410, which has a promising application in the transformation of feather into soluble protein. The results of single factor design revealed that the concentration of feather at 20 g/l and the initial pH at value 8 was the best for the production of keratinase and the degradation of feather. Ammonia salt and nitrate salt strongly restricted the production of keratinase and the degradation of feather. Result of Box-Behnken design (BBD) experiment which was used to optimize concentrations of glucose, corn steep flour and K2HPO4 for further improvement of keratinase productivity showed that the optimal medium was composed of glucose (20 g/l), corn steep flour (7.5 g/l), K2HPO4 (1 g/l) and feather (20 g/l). The result of submerged batch cultivation of B. licheniformis ZJUEL31410 in the 5 L fermentor indicated that the optimal medium had the highest keratinase and the degree of feather degradation (DFD) at 54.9 U/ml and 72.4%; both were 5 times more than the basal medium. The degradation of feather was verified by the analysis of scanning electron microscopy (SEM). This study provides a foundation for the production of keratinase and the conversion of feather to soluble protein through submerged fermentation process by B. licheniformis ZJUEL31410.Key words: Bacillus licheniformis ZJUEL31410, keratinase, culture medium, optimization, Box-Behnken design, scanning electron microscopy, feather degradation

    ELECTROCHEMICAL STUDIES ON MO - FE PROTEIN

    Get PDF
    The midpoint potentials and n values of Mo - Fe protein of azotobacter vinelandii ( Avl ) were determined by the coulometry at fixed potentials . The oxidation - reduction states of the Mo-Fe protein were discussed.The oxidation-reduction states of the Mo-Fe protein by the carrier ( methyl viologen ) is studied

    Air-sea exchange of carbon dioxide in ocean margins: A province-based synthesis

    Get PDF
    In determining global sea-to-air CO2 flux from measurements or models, the ocean margin has not been resolved from the land or the open ocean. Recent studies have indicated that shelves can be either a large sink or a source for atmospheric CO2. This CO2 sink/source term may substantially alter our current view of the global carbon budget for land and oceans. However, past fieldwork and synthesis have focused on a few shelves in the northern temperate zone while the vast majority of other shelves are ignored. By dividing the highly heterogeneous shelves into seven provinces, we suggest that the continental shelves are a sink for atmospheric CO2 at mid-high latitudes (-0.33 Pg C a(-1)) and a source of CO2 at low latitudes (0.11 Pg C a(-1)). Warm temperature and high terrestrial organic carbon input are most likely responsible for the CO2 release in low latitude shelves

    EZH2 protein: A promising immunomarker for the detection of hepatocellular carcinomas in liver needle biopsies

    Get PDF
    Background and aims: A previous study of ours indicated that enhancer of zeste homologue 2 (EZH2) plays an important role in hepatocellular carcinoma (HCC) tumorigenesis. The aim of the present study was to investigate the potential diagnostic utility of EZH2 in HCC. Methods: Immunohistochemistry was performed to examine the expression dynamics of EZH2 in two independent surgical cohorts of HCC and non-malignant liver tissues to develop a diagnostic yield of EZH2, HSP70 and GPC3 for HCC detection. The diagnostic performances of EZH2 and a three-marker panel in HCC were re-evaluated by using an additional biopsy cohort. Results: Immunohistochemistry analysis demonstrated that the sensitivity and specificity of EZH2 for HCC detection was 95.8% and 97.8% in the testing cohort. Similar results were confirmed in the validation cohort. For diagnosis of well-differentiated HCCs, the sensitivity and specificity were 68.9% and 91.5% for EZH2, 62.5% and 98.5% for HSP70, 50.0% and 92.1% for GPC3, and 75.0% and 100% for a three-marker panel. In biopsies, positive cases for at least one marker increased from large regenerative nodule and hepatocellular adenoma (0/12) to focal nodular hyperplasia (2/20), dysplastic nodule (7/25), well-differentiated HCC (16/18) and moderately and poorly differentiated HCC (54/54). When at least two positive markers were considered, regardless of their identity, the positive cases were detected in 0/12 large regenerative nodules and hepatocellular adenomas, 0/20 focal nodular hyperplasias, 0/25 dysplastic nodules, 11/18 well-differentiated HCCs, 32/37 moderately differentiated HCCs and 15/17 poorly differentiated HCCs. Conclusion: Our findings suggest that EZH2 protein, as examined by immunohistochemistry, may serve as a promising diagnostic biomarker of HCCs, and the use of a three-marker panel (EZH2, HSP70 and GPC3) can improve the rate of detection of HCCs in liver biopsy tissues.published_or_final_versio

    Simulation Methodology for Electron Transfer in CMOS Quantum Dots

    Full text link
    The construction of quantum computer simulators requires advanced software which can capture the most significant characteristics of the quantum behavior and quantum states of qubits in such systems. Additionally, one needs to provide valid models for the description of the interface between classical circuitry and quantum core hardware. In this study, we model electron transport in semiconductor qubits based on an advanced CMOS technology. Starting from 3D simulations, we demonstrate an order reduction and the steps necessary to obtain ordinary differential equations on probability amplitudes in a multi-particle system. We compare numerical and semi-analytical techniques concluding this paper by examining two case studies: the electron transfer through multiple quantum dots and the construction of a Hadamard gate simulated using a numerical method to solve the time-dependent Schrodinger equation and the tight-binding formalism for a time-dependent Hamiltonian

    Malignancy risk analysis in patients with inadequate fine needle aspiration cytology (FNAC) of the thyroid

    Get PDF
    Background Thyroid fine needle aspiration cytology (FNAC) is the standard diagnostic modality for thyroid nodules. However, it has limitations among which is the incidence of non-diagnostic results (Thy1). Management of cases with repeatedly non-diagnostic FNAC ranges from simple observation to surgical intervention. We aim to evaluate the incidence of malignancy in non-diagnostic FNAC, and the success rate of repeated FNAC. We also aim to evaluate risk factors for malignancy in patients with non-diagnostic FNAC. Materials and Methods Retrospective analyses of consecutive cases with thyroid non diagnostic FNAC results were included. Results Out of total 1657 thyroid FNAC done during the study period, there were 264 (15.9%) non-diagnostic FNAC on the first attempt. On repeating those, the rate of a non-diagnostic result on second FNAC was 61.8% and on third FNAC was 47.2%. The overall malignancy rate in Thy1 FNAC was 4.5% (42% papillary, 42% follicular and 8% anaplastic), and the yield of malignancy decreased considerably with successive non-diagnostic FNAC. Ultrasound guidance by an experienced head neck radiologist produced the lowest non-diagnostic rate (38%) on repetition compared to US guidance by a generalist radiologist (65%) and by non US guidance (90%). Conclusions There is a low risk of malignancy in patients with a non-diagnostic FNAC result, commensurate to the risk of any nodule. The yield of malignancy decreased considerably with successive non-diagnostic FNAC

    Experimental Quantum Hamiltonian Learning

    Get PDF
    Efficiently characterising quantum systems, verifying operations of quantum devices and validating underpinning physical models, are central challenges for the development of quantum technologies and for our continued understanding of foundational physics. Machine-learning enhanced by quantum simulators has been proposed as a route to improve the computational cost of performing these studies. Here we interface two different quantum systems through a classical channel - a silicon-photonics quantum simulator and an electron spin in a diamond nitrogen-vacancy centre - and use the former to learn the latter's Hamiltonian via Bayesian inference. We learn the salient Hamiltonian parameter with an uncertainty of approximately 10−510^{-5}. Furthermore, an observed saturation in the learning algorithm suggests deficiencies in the underlying Hamiltonian model, which we exploit to further improve the model itself. We go on to implement an interactive version of the protocol and experimentally show its ability to characterise the operation of the quantum photonic device. This work demonstrates powerful new quantum-enhanced techniques for investigating foundational physical models and characterising quantum technologies
    • …
    corecore