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CFO Estimation in OFDM Systems under
Timing and Channel Length Uncertainties with Model Averaging

Kun Cai, Xiao Li, Jian Du, Yik-Chung Wu, and Feifei Gao

Abstract—In this letter, we investigate the problem of CFO
estimation in OFDM systems when the timing offset and channel
length are not exactly known. Instead of explicitly estimating
the timing offset and channel length, we employ a multi-model
approach, where the timing offset and channel length can take
multiple values with certain probabilities. The effect of multi-
model is directly incorporated into the CFO estimator. Results
show that the proposed estimator outperforms the estimator
selecting only the most probable model and the method taking
the maximal model.

Index Terms—Carrier frequency offset (CFO), Bayesian,
multi-model, timing offset, channel length uncertainty, orthog-
onal frequency division multiplexing (OFDM).

I. INTRODUCTION

DUE to its robustness against frequency selective fading
channels, orthogonal frequency division multiplexing

(OFDM) has been widely used in many communication sys-
tems such as wireless metropolitan area networks (WMAN),
wireless local area networks (WLAN) and digital broadcasting
(e.g., DAB and DVB) systems [1]. On the other hand, OFDM
systems are highly sensitive to the carrier frequency offset
(CFO) caused by the mismatch of the local oscillators in
transceivers. Therefore, the topic of CFO estimation in OFDM
systems attracts a lot of attention [2]-[4]. However, many
of the existing CFO estimation schemes require perfect time
synchronization and known channel length, but such assump-
tions are too restrictive in practice. In particular, the metrics
for many existing timing synchronization algorithms have a
plateau in the presence of frequency selective fading channel
[3], [5], [6], making perfect time synchronization difficult to
achieve. Furthermore, the channel length may be unknown in
practice and may also vary with the propagation environment.

Recently, in [7], the ML joint CFO and channel estimatior
with timing ambiguity is proposed. The tradeoff between
jointly estimating timing offset and CFO versus using a
channel model including the effect of timing offset is in-
vestigated. However, the channel length is assumed to be
known in [7]. In this letter, we investigate the CFO estimation
problem when both timing offset and channel length are not
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known. We model the channel as a mixture of possible models
instead of explicitly selecting one single model. Based on the
mixture models, we derive the optimal maximum a posterior
(MAP) CFO estimator. However, the optimal MAP estimator
may present some challenges for practical implementation.
Therefore, we propose an empirical estimator, which also
estimates the prior parameters from the received data with
the aid of a training sequence. Furthermore, a model space
reduction method is introduced, in order to exclude those
models with low probabilities.

Notation : The operator diag(x) denotes a diagonal matrix
with the elements of x located on the main diagonal. Su-
perscripts (⋅)𝐻 and (⋅)𝑇 denote the conjugate transpose and
the transpose operators respectively. Notation I is the identity
matrix and det(A) takes the determinant of matrix A.

II. SYSTEM MODEL

A packet-based OFDM system with 𝑁 subcarriers is con-
sidered. For each data packet, it is preceded by some training
blocks. Without loss of generality, we assume that there is
only one OFDM training symbol in the preamble. At the
transmitter, an OFDM symbol is generated by passing the data
(or training) symbols d = [𝑑(0), 𝑑(1), . . . , 𝑑(𝑁−1)]𝑇 through
an inverse fast Fourier transform (IFFT). A cyclic prefix (CP)
of length 𝐿CP is inserted ahead of the OFDM symbol to
cope with the inter-symbol interference (ISI) caused by multi-
path channel. The discrete-time composite channel impulse
response (encompassing the transmit/receive filters and the
transmission medium) is denoted as h = [ℎ0, . . . , ℎ𝐿−1]

𝑇 , and
is static over one data packet. The CP length 𝐿CP is assumed
to be larger than the channel order 𝐿.

At the receiver, it is assumed that coarse timing synchro-
nization has been achieved (e.g., by using correlation based
timing synchronization scheme [3]), such that the FFT window
starts within the ISI-free region. More specifically, defining the
sample indexes of a perfectly synchronized OFDM symbol as
[−𝐿CP, ..., 0, ...𝑁 − 1], the estimated starting position of the
FFT window can be regarded in the range [−(𝐿CP − 𝐿), 0].
In the following, we denote the timing offset between the
estimated starting position of the FFT window and the perfect
timing point as 𝜃𝑜. After CP removal, the received signal
vector x, which consists of 𝑁 consecutive samples, is given
by [7]

x = Γ(𝜔𝑜)F
𝐻DF𝐿CP𝝃 + e ≜ H(𝜔𝑜)𝝃 + e, (1)

where 𝜔𝑜 is the CFO between the transmitter and re-
ceiver; Γ(𝜔𝑜) ≜ diag(1, . . . , 𝑒𝑗(𝑁−1)𝜔𝑜) is the matrix mod-
elling the CFO effect; D ≜ diag(d); F is the IFFT
matrix; F𝐿CP denotes the first 𝐿CP columns of F; 𝝃 ≜

1536-1276/10$25.00 c⃝ 2010 IEEE



IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, VOL. 9, NO. 3, MARCH 2010 971

𝑃 (x∣𝜔,ℳ𝑖𝑗) =
𝜎2(𝑗−𝑖+1−𝑁) det(Λ−1

𝑖𝑗 )

𝜋𝑁 det[𝜎2Λ−1
𝑖𝑗 +H𝐻

𝑖𝑗 (𝜔)H𝑖𝑗(𝜔)]
exp (−𝝁𝐻

𝑖𝑗Λ
−1
𝑖𝑗 𝝁𝑖𝑗 − 𝜎−2x𝐻x)

× exp([𝜎2Λ−1
𝑖𝑗 𝝁𝑖𝑗 +H𝐻

𝑖𝑗 (𝜔)x]
𝐻 [𝜎2Λ−1

𝑖𝑗 +H𝐻
𝑖𝑗 (𝜔)H𝑖𝑗(𝜔)]

−1[Λ−1
𝑖𝑗 𝝁𝑖𝑗 + 𝜎−2H𝐻

𝑖𝑗 (𝜔)x]).

(5)

[0𝑇
𝜃𝑜×1 h𝑇 0𝑇

(𝐿CP−𝜃𝑜−𝐿)×1]
𝑇 is the composite chan-

nel including the timing offset 𝜃𝑜; and vector e ≜
[𝑒0, 𝑒1, ⋅ ⋅ ⋅ , 𝑒𝑁−1]

𝑇 denotes the complex white Gaussian
noise with zero mean and covariance matrix C𝑒 = 𝐸{ee𝐻} =
𝜎2I.

III. CFO ESTIMATION UNDER CHANNEL MODEL

UNCERTAINTY

In general, we do not know the channel length 𝐿 and the
timing offset 𝜃𝑜. One way to estimate the CFO is to treat the
whole 𝝃 as unknown as suggested in [7]. It has been shown
that this method performs asymptotically (𝑁 → ∞) the same
as if the timing and channel length are estimated together with
CFO [7]. However, when the number of subcarriers is not very
large, this method suffers from performance degradation, since
unnecessary parameters are included in the estimator.

Since the true channel h can start and end at any position
within 𝝃 as long as the starting position occurs before the
ending position, in the following, we model the channel as a
mixture of possible models from a set Ω. Each model ℳ𝑖𝑗 ∈
Ω corresponds to the case h starts at the 𝑖th position and ends at
the 𝑗 th position in 𝝃 (0 ≤ 𝑖 ≤ 𝑗 ≤ 𝐿CP − 1). More specifically

ℳ𝑖𝑗 : 𝝃𝑖𝑗 ≜ [𝜉𝑖 𝜉𝑖+1 ⋅ ⋅ ⋅ 𝜉𝑗 ]
𝑇 ,

𝜉0 = ⋅ ⋅ ⋅ = 𝜉𝑖−1 = 𝜉𝑗+1 = ⋅ ⋅ ⋅ = 𝜉𝐿CP−1 = 0, (2)

where 𝝃𝑖𝑗 is the subvector containing the 𝑖th to the 𝑗 th elements
of 𝝃, and the symbol 𝜉𝑖 denotes the 𝑖th element in 𝝃. It is
assumed that the channel 𝝃𝑖𝑗 follows Gaussian distribution
𝒩 (𝝁𝑖𝑗 ,Λ𝑖𝑗) with the probability density function

𝑃 (𝝃𝑖𝑗) =
1

𝜋(𝑗−𝑖+1) det(Λ𝑖𝑗)

× exp[−(𝝃𝑖𝑗 − 𝝁𝑖𝑗)
𝐻Λ−1

𝑖𝑗 (𝝃𝑖𝑗 − 𝝁𝑖𝑗)].

(3)

Assuming that each model ℳ𝑖𝑗 has an associated probability
𝑃 (ℳ𝑖𝑗), the CFO posterior density can be calculated by the
Bayes rule as [8]

𝑃 (𝜔∣x) =
𝐿CP−1∑
𝑖=0

𝐿CP−1∑
𝑗=𝑖

𝑃 (ℳ𝑖𝑗)
𝑃 (x∣𝜔,ℳ𝑖𝑗)𝑃 (𝜔)

𝑃 (x)
, (4)

where 𝑃 (𝜔) is the CFO prior, whose distribution could be
obtained under some scenarios, e.g., in cooperative commu-
nication systems [9]. If there is no CFO prior information,
we can set 𝑃 (𝜔) = constant [8]. In (4), 𝑃 (x∣𝜔,ℳ𝑖𝑗) =∫
𝑃 (x∣𝜔, 𝝃𝑖𝑗 ,ℳ𝑖𝑗)𝑃 (𝝃𝑖𝑗)𝑑𝝃𝑖𝑗 is the averaged likelihood

function of x over channel realization 𝝃𝑖𝑗 . Since the vector
e is Gaussian distributed and 𝝃𝑖𝑗 is also a Gaussian random
vector drawn from 𝒩 (𝝁𝑖𝑗 ,Λ𝑖𝑗), the likelihood function can

be evaluated as

𝑃 (x∣𝜔,ℳ𝑖𝑗)

=

∫
1

(𝜋𝜎2)𝑁
exp

(
−
∥∥x−H𝑖𝑗(𝜔)𝝃𝑖𝑗

∥∥2
𝜎2

)
𝑃 (𝝃𝑖𝑗)𝑑𝝃𝑖𝑗

=
1

𝜋(𝑁+𝑗−𝑖+1)𝜎2𝑁

∫
exp

(
−
∥∥x−H𝑖𝑗(𝜔)𝝃𝑖𝑗

∥∥2
𝜎2

)

× 1

det(Λ𝑖𝑗)
exp[−(𝝃𝑖𝑗 − 𝝁𝑖𝑗)

𝐻Λ−1
𝑖𝑗 (𝝃𝑖𝑗 − 𝝁𝑖𝑗)]𝑑𝝃𝑖𝑗 ,

where H𝑖𝑗(𝜔) is the sub-matrix of H(𝜔) from the 𝑖th to
the 𝑗 th column. Assuming that {𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎

2} and 𝑃 (ℳ𝑖𝑗)
are known, and following the method in [10], after some
straightforward but tedious derivations, the exact expression
of 𝑃 (x∣𝜔,ℳ𝑖𝑗) is shown in (5) at the top of this page. After
putting (5) into (4), the MAP CFO estimator is obtained as

𝜔̂ = argmax
𝜔

{𝑃 (𝜔∣x)}. (6)

IV. EMPIRICAL MAP CFO ESTIMATOR

While the MAP Estimator in (6) is a rigorous solution to the
CFO estimation problem under channel model uncertainty, it
presents some challenges for practical implementation. Firstly,
the number of terms in (4) can be enormous (more specifically,
(𝐿CP+1)𝐿CP/2 in this case), rendering exhaustive summation
impractical. This problem will be addressed in Section V.
Secondly, in general, one does not know the prior probabilities
𝑃 (ℳ𝑖𝑗), nor the quantities {𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎

2}. For the unknown
quantities {𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎

2}, one could treat them as nuisance
parameters and integrate them out as

𝑃 (x∣𝜔,ℳ𝑖𝑗) =

∫
𝑃 (x∣𝜔,𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎

2,ℳ𝑖𝑗)

× 𝑃 (𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎
2)𝑑{𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎

2},
(7)

where 𝑃 (x∣𝜔,𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎
2,ℳ𝑖𝑗) has the same expression as

(5) with {𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎
2} being treated as unknown parameters.

Although this makes sense intuitively, we do not pursue
this approach here because integrating (5) with respect to
{𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎

2} is an intractable problem. Furthermore, studies
in [8] show that the integration in (7) is asymptotically equiv-
alent to substituting the estimate of the nuisance parameters
as follows

𝑃 (x∣𝜔,ℳ𝑖𝑗) ≈ 𝑃 (x∣𝜔, 𝝁̂𝑖𝑗 , Λ̂𝑖𝑗 , 𝜎̂
2,ℳ𝑖𝑗), (8)

where {𝝁̂𝑖𝑗 , Λ̂𝑖𝑗 , 𝜎̂
2} are the estimates of {𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎

2}.
Similarly, for unknown 𝑃 (ℳ𝑖𝑗) in (4), it can also be tackled
by using its estimate 𝑃 (ℳ𝑖𝑗 ∣x). This results in the so-called
empirical Bayesian estimator [11]. In the following, we discuss
how to obtain the estimates of {𝝁𝑖𝑗 ,Λ𝑖𝑗 , 𝜎

2, 𝑃 (ℳ𝑖𝑗)}.
For a fixed model ℳ𝑖𝑗 , the received data can be written as

x = H𝑖𝑗(𝜔𝑜)𝝃𝑖𝑗 + e. (9)
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Based on the signal model in (9), the joint ML estimates of pa-
rameters {𝝃𝑖𝑗 , 𝜔𝑜} are given by minimizing Υ(x; 𝝃𝑖𝑗 , 𝜔̃𝑖𝑗) =

∥x−H𝑖𝑗(𝜔̃𝑖𝑗)𝝃𝑖𝑗∥2 [7], where 𝝃𝑖𝑗 , 𝜔̃𝑖𝑗 are trial values of
𝝃𝑖𝑗 and 𝜔𝑜 respectively. Due to the linearity of parameter
𝝃𝑖𝑗 in (9), the ML estimate for 𝝃𝑖𝑗 (when 𝜔̃𝑖𝑗 is fixed)
is 𝝃𝑖𝑗 = [H𝐻

𝑖𝑗 (𝜔̃𝑖𝑗)H𝑖𝑗(𝜔̃𝑖𝑗)]
−1H𝐻

𝑖𝑗 (𝜔̃𝑖𝑗)x. Substituting this
result into the cost function Υ(x; 𝝃𝑖𝑗 , 𝜔̃𝑖𝑗), the ML estimator
for 𝜔𝑜 conditioned on ℳ𝑖𝑗 is given by

𝜔̂𝑖𝑗 = argmax
𝜔̃

{x𝐻H𝑖𝑗(𝜔̃)[H
𝐻
𝑖𝑗 (𝜔̃)H𝑖𝑗(𝜔̃)]

−1H𝐻
𝑖𝑗 (𝜔̃)x},

(10)
and the ML estimator for 𝝃𝑖𝑗 is 𝝃𝑖𝑗 =
[H𝐻

𝑖𝑗 (𝜔̂𝑖𝑗)H𝑖𝑗(𝜔̂𝑖𝑗)]
−1H𝐻

𝑖𝑗 (𝜔̂𝑖𝑗)x. With the channel and
CFO estimates under model ℳ𝑖𝑗 , an unbiased, consistent
estimate of 𝜎2 can be obtained by taking [12]

𝜎̂2
𝑖𝑗 =

1

𝑁 − (𝑗 − 𝑖+ 1)

∥∥∥x−H𝑖𝑗(𝜔̂𝑖𝑗)𝝃𝑖𝑗

∥∥∥2. (11)

It is known that the ML estimate 𝝃𝑖𝑗 is asymptotically
Gaussian distributed with mean 𝝃𝑖𝑗 and covariance matrix
equals to the Cramer Rao Lower Bound (CRLB) [13]. That is,
𝝃𝑖𝑗

𝑎∼𝒩 (𝝃𝑖𝑗 ,CRLB). On the other hand, given 𝝃𝑖𝑗 , it can be

easily shown that [14] 𝝃𝑖𝑗
𝑎∼𝒩 (𝝃𝑖𝑗 ,CRLB). With the CRLB

derived for 𝝃𝑖𝑗 in the presence of unknown 𝜔 in [15], we can
take

𝝁̂𝑖𝑗 = 𝝃𝑖𝑗 = [H
𝐻
𝑖𝑗 (𝜔̂𝑖𝑗)H𝑖𝑗(𝜔̂𝑖𝑗)]

−1H𝐻
𝑖𝑗 (𝜔̂𝑖𝑗)x (12)

Λ̂𝑖𝑗 =
𝜎̂2
𝑖𝑗

2
(2[H𝐻

𝑖𝑗 (𝜔̂𝑖𝑗)H𝑖𝑗(𝜔̂𝑖𝑗)]
−1 + 𝛾−1𝜷𝜷𝐻), (13)

where

𝛾 = 𝝃
𝐻

𝑖𝑗H
𝐻
𝑖𝑗 (𝜔̂𝑖𝑗)TΨ(𝜔̂𝑖𝑗)TH𝑖𝑗(𝜔̂𝑖𝑗)𝝃𝑖𝑗 ,

𝜷 = [H𝐻
𝑖𝑗 (𝜔̂𝑖𝑗)H𝑖𝑗(𝜔̂𝑖𝑗)]

−1H𝐻
𝑖𝑗 (𝜔̂𝑖𝑗)TH𝑖𝑗(𝜔̂𝑖𝑗)𝝃𝑖𝑗 ,

T = diag(0, ⋅ ⋅ ⋅ , 𝑁 − 1),
Ψ(𝜔̂𝑖𝑗) = I−H𝑖𝑗(𝜔̂𝑖𝑗)[H

𝐻
𝑖𝑗 (𝜔̂𝑖𝑗)H𝑖𝑗(𝜔̂𝑖𝑗)]

−1H𝐻
𝑖𝑗 (𝜔̂𝑖𝑗).

Note that the estimated values of 𝜔, 𝝃𝑖𝑗 and 𝜎2
𝑖𝑗 are used

instead to find an approximate covariance because the CRLB
depends on the true value of 𝜔, 𝝃𝑖𝑗 and 𝜎2

𝑖𝑗 . Therefore, putting
(11), (12) and (13) into (8), we can obtain an approximation
to 𝑃 (x∣𝜔,ℳ𝑖𝑗).

Finally, to estimate the posterior probabilities 𝑃 (ℳ𝑖𝑗) for
each possible ℳ𝑖𝑗 , we could follow the derivation from [16]
and obtain

𝑃 (ℳ𝑖𝑗 ∣x) =
exp(− 1

2BIC𝑖𝑗)
𝐿CP−1∑
𝑖=0

𝐿CP−1∑
𝑗=𝑖

exp(− 1
2BIC𝑖𝑗)

, (14)

where

BIC𝑖𝑗
Δ
=− 2 ln[𝑃 (x∣𝜔̂𝑖𝑗 , 𝝃𝑖𝑗 , Λ̂𝑖𝑗 , 𝜎̂

2
𝑖𝑗 ,ℳ𝑖𝑗)]

+ 2(𝑗 − 𝑖+ 1) ln(2𝑁)
(15)

is the Bayesian information criterion (BIC) for model ℳ𝑖𝑗 .

V. REDUCTION OF MODEL SPACE

The number of possible models in (4) often renders the
exhaustive summation impractical. In general, the models to
be averaged can be reduced to a subset of models Φ that are
strongly supported by the data [17]. For example, in [17],
Madigan and Raftery argued that if a model predicts the
data far less well than the model which provides the best
predictions, then it should no longer be considered. More
specifically, defining the most likely model as ℳ𝑚̂𝑛̂ with

{𝑚̂, 𝑛̂} = argmax
0≤𝑚≤𝑛≤𝐿CP−1

𝑃 (ℳ𝑚𝑛∣x), (16)

the models not belonging to

Φ = {ℳ𝑖𝑗 :
𝑃 (ℳ𝑚̂𝑛̂∣x)
𝑃 (ℳ𝑖𝑗 ∣x)

≤ 𝒞}, (17)

should be excluded from (4), where 𝒞 is a design parameter.
However, this method involves a subjective selection of pa-
rameter 𝒞, while there is no general guideline for determining
its optimal value. Here, we focus on the most likely model
ℳ𝑚̂𝑛̂ and then average the estimator over an expanded class
of models “near" ℳ𝑚̂𝑛̂ as [18]

Φ = {ℳ𝑖𝑗 : 𝑖 ∈ {𝑚̂− 1, 𝑚̂, 𝑚̂+ 1},
𝑗 ∈ {𝑛̂− 1, 𝑛̂, 𝑛̂+ 1}, 𝑖 ≤ 𝑗} (18)

where in this case, only the adjacent models are examined.
It is noticed that (16) by nature is a model selection

problem. As we see in (16), a two dimensional search over
(𝑚,𝑛) is needed to locate the most likely model. The com-
putational complexity could be quite high if 𝐿CP is large. In
the following, we propose a low complexity model selection
algorithm by exploiting the information provided by the local
behavior of the BIC rule.

Based on (15), we compare the BIC values of two adjacent
models

BIC(𝑖,𝑗) − BIC(𝑖,𝑗−1) = 𝜆(𝑖,𝑗) + 2 ln(2𝑁), (19)

where

𝜆(𝑖,𝑗) =2 ln𝑃 (x∣𝜔̂(𝑖,𝑗−1), 𝝃(𝑖,𝑗−1), Λ̂(𝑖,𝑗−1), 𝜎̂
2
(𝑖,𝑗−1),ℳ(𝑖,𝑗−1))

− 2 ln𝑃 (x∣𝜔̂(𝑖,𝑗), 𝝃(𝑖,𝑗), Λ̂(𝑖,𝑗), 𝜎̂
2
(𝑖,𝑗),ℳ(𝑖,𝑗))

is the difference of the “goodness-of-fit" to the data between
two adjacent models. In order to avoid confusions, here we
use BIC(𝑖,𝑗) to denote BIC𝑖𝑗 , and the same notation is also
applied to 𝜔̂(𝑖,𝑗), 𝝃(𝑖,𝑗), Λ̂(𝑖,𝑗) and 𝜎̂2

(𝑖,𝑗). If both ℳ(𝑖,𝑗)

and ℳ(𝑖,𝑗−1) fit the data very well, 𝜆(𝑖,𝑗) is approximately
zero, and BIC(𝑖,𝑗) − BIC(𝑖,𝑗−1) will be close to 2ln(2𝑁).
On the other hand, if ℳ(𝑖,𝑗) fits the data much better than
ℳ(𝑖,𝑗−1), 𝜆(𝑖,𝑗) is a negative number with large magnitude,
and BIC(𝑖,𝑗)−BIC(𝑖,𝑗−1) will be a number very different from
2ln(2𝑁).

Therefore, by comparing the difference in (19) to a thresh-
old, we can decide whether the additional element 𝜉𝑗 (at the
end of 𝝃(𝑖,𝑗)) is different from zero. If the threshold is taken
as 2ln(2𝑁) [19], the decision criterion can be mathematically
stated as

BIC(𝑖,𝑗) − BIC(𝑖,𝑗−1)

𝜉𝑗=0

≷
𝜉𝑗 ∕=0

0. (20)
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m n j

(0, )BIC j

Fig. 1. A typical variation of BIC(0,𝑗) for increasing value of 𝑗 ∈
{0, ...𝐿CP − 1}.

Similarly, we can obtain

BIC(𝑖,𝑗) − BIC(𝑖+1,𝑗)

𝜉𝑖=0

≷
𝜉𝑖 ∕=0

0, (21)

for determining whether the additional element at the front
of 𝝃(𝑖,𝑗) is different from zero. Summarizing the discussion
above, the two dimensional search in (16) can be reduced to
one dimensional search by locating the first and last propa-
gation channel path with significant energy. More specifically,
the first propagation channel path 𝜉𝑚̂ and the last propagation
channel path 𝜉𝑛̂ can be located as

𝑚̂ = min{𝑗} subject to BIC(𝑖,𝑗) − BIC(𝑖,𝑗−1) < 0, (22)

𝑛̂ = max{𝑗} subject to BIC(𝑖,𝑗) − BIC(𝑖,𝑗−1) < 0, (23)

where 𝑖 should be smaller than the position of the first
propagation path. Without loss of generality, 𝑖 is set to be
0. A typical variation of BIC(0,𝑗), as 𝑗 increases, is shown in
Fig. 1. As it is shown in the figure, 𝑚 and 𝑛 are the starting
and ending order whose BIC value would decrease from the
previous order respectively.

VI. SIMULATION RESULTS AND DISCUSSIONS

In this section, simulation results are presented to illus-
trate the MSE performance of different empirical CFO MAP
estimators. In particular, the following six estimators are
compared: 1) Model averaged over full model space Ω; 2)
Model selection by 2-D search in (16); 3) Model selection
using local BIC information in (22) and (23); 4) Model
averaged over the reduced set Φ in (18); 5) ML CFO estimator
using maximum channel model [7]; and 6) CFO estimator with
known timing offset and channel length.

In all simulations, 𝑁 = 64, 𝐿CP = 16, which is consistent
with the WLAN standard [20]. The OFDM training symbol
is constructed by transmitting a Chu-sequence in frequency
domain [7]. A multipath Rayleigh fading channel of length
𝐿 = 4 is considered. Exponential power delay profile (nor-
malized to unit power) is used for the channel. The timing
offset is set as 𝜃𝑜 = 4 before the ideal timing. Without loss
of generality, the CFO 𝜔𝑜 is generated as a random variable
uniformly distributed in 2𝜋 × [−0.5, 0.5]/𝑁 and it is assumed
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Fig. 2. MSE performance of different estimators at low and medium SNR.
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Fig. 3. MSE performance of different estimators at high SNR.

that there is no prior information for CFO. All results are
averaged over 5000 Monte Carlo runs.

Fig. 2 shows the performance of the above estimators in
low to medium signal-to-noise ratios (SNR). It can be seen
that the algorithm with two dimensional model selection has
the same performance as the proposed low complexity method
using local BIC information in (22) and (23), and they both
perform better than the maximal model method. Furthermore,
it is obvious that the algorithms with model averaging have
noticeable performance improvements over the algorithms
based on model selection. It is also found that averaging
algorithm over the full model space Ω in general has a better
performance than that over the reduced set Φ in (18), forming
a performance-complexity tradeoff.

Fig. 3 shows the corresponding results at high SNR. It
can be shown that the performance of algorithms with model
averaging are better than those based on model selection
and maximum possible model. But at high enough SNR, the
performance of algorithms based on the model averaging and
model selection all converge to that of the algorithm based on
known channel model. It is because at high SNR, the model
selection algorithm can correctly identify the timing offset and
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channel length. On the other hand, the algorithm based on
the maximum possible model has an irreducible gap from the
known channel model case.

Notice that in terms of complexity, model-averaging algo-
rithm may not be a favorable choice. However, the work re-
ported in this letter represents a systematic study and rigorous
derivation of optimal CFO estimator when the timing offset
and channel length are not known. The optimal estimator auto-
matically weighs all the available information and achieves the
best performance over the whole SNR range. The framework
presented includes the model selection method as a special
case. Furthermore, the method in [7] can also be viewed as a
special case by putting all the weighting to one model only.

VII. CONCLUSIONS

In this letter, a Bayesian multi-model based CFO estimator
was developed for OFDM systems, with timing offset and
channel length being unknown. We also derived an empirical
version of the estimator and proposed a low complexity
model space reduction method. Results showed that model-
averaging based estimator performs better than the estimator
based on model selection and provides performance close to
the estimator with known timing offset and channel length.
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