98 research outputs found

    Class Attention to Regions of Lesion for Imbalanced Medical Image Recognition

    Full text link
    Automated medical image classification is the key component in intelligent diagnosis systems. However, most medical image datasets contain plenty of samples of common diseases and just a handful of rare ones, leading to major class imbalances. Currently, it is an open problem in intelligent diagnosis to effectively learn from imbalanced training data. In this paper, we propose a simple yet effective framework, named \textbf{C}lass \textbf{A}ttention to \textbf{RE}gions of the lesion (CARE), to handle data imbalance issues by embedding attention into the training process of \textbf{C}onvolutional \textbf{N}eural \textbf{N}etworks (CNNs). The proposed attention module helps CNNs attend to lesion regions of rare diseases, therefore helping CNNs to learn their characteristics more effectively. In addition, this attention module works only during the training phase and does not change the architecture of the original network, so it can be directly combined with any existing CNN architecture. The CARE framework needs bounding boxes to represent the lesion regions of rare diseases. To alleviate the need for manual annotation, we further developed variants of CARE by leveraging the traditional saliency methods or a pretrained segmentation model for bounding box generation. Results show that the CARE variants with automated bounding box generation are comparable to the original CARE framework with \textit{manual} bounding box annotations. A series of experiments on an imbalanced skin image dataset and a pneumonia dataset indicates that our method can effectively help the network focus on the lesion regions of rare diseases and remarkably improves the classification performance of rare diseases.Comment: Accepted by Neurocomputing on July 2023. 37 page

    Prominent edge detection with deep metric expression and multi-scale features

    Get PDF
    Abstract(#br)Edge detection is one of today’s hottest computer vision issues with widely applications. It is beneficial for improving the capability of many vision systems, such as semantic segmentation, salient object detection and object recognition. Deep convolution neural networks (CNNs) recently have been employed to extract robust features, and have achieved a definite improvement. However, there is still a long run to study this hotspot with the main reason that CNNs-based approaches may cause the edges thicker. To address this problem, a novel semantic edge detection algorithm using multi-scale features is proposed. Our model is deep symmetrical metric learning network, which includes 3 key parts. Firstly, the deep detail layer, as a preprocessing layer and a guide module, is..

    Circulating microRNAs as novel biomarkers for dilated cardiomyopathy

    Get PDF
    Background: Circulating microRNAs (miRNAs) potentially carry disease-specific information. In the current study, we aim to characterize the miRNA signature in plasma from dilated cardiomyopathy (DCM) patients and assess the possible correlation between expression levels of circulating miRNAs and symptom severity in DCM patients. Methods: Using microarray-based miRNA expression profiling, we compared the miRNA expression levels in plasma samples from 4 DCM patients and 3 healthy controls. The expression levels of selected differentially expressed, upregulated miRNAs (miR-3135b, miR-3908 and miR-5571-5p) were validated independently in plasma samples from 19 DCM patients and 20 controls. Results: We observed that plasma miR-3135b (p < 0.001), miR-3908 (p < 0.001) and miR-5571-5p (p < 0.001) were significantly upregulated in DCM patients. The area under receiver operating characteristic (ROC) curves for the 3 miRNAs ranged from 0.83 to 1.00. Moreover, miR-5571-5p levels in plasma were significantly upregulated with severe New York Heart Association (NYHA) classification (p < 0.05). Conclusions: The circulating miRNAs (miR-3135b, miR-3908 and miR-5571-5p) have potential as diagnostic biomarkers for DCM. Additionally, miR-5571-5p correlated with NYHA classification.

    Secondary infection with Streptococcus suis serotype 7 increases the virulence of highly pathogenic porcine reproductive and respiratory syndrome virus in pigs

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Porcine reproductive and respiratory syndrome virus (PRRSV) and <it>Streptococcus suis </it>are common pathogens in pigs. In samples collected during the porcine high fever syndrome (PHFS) outbreak in many parts of China, PRRSV and <it>S. suis </it>serotype 7 (SS7) have always been isolated together. To determine whether PRRSV-SS7 coinfection was the cause of the PHFS outbreak, we evaluated the pathogenicity of PRRSV and/or SS7 in a pig model of single and mixed infection.</p> <p>Results</p> <p>Respiratory disease, diarrhea, and anorexia were observed in all infected pigs. Signs of central nervous system (CNS) disease were observed in the highly pathogenic PRRSV (HP-PRRSV)-infected pigs (4/12) and the coinfected pigs (8/10); however, the symptoms of the coinfected pigs were clearly more severe than those of the HP-PRRSV-infected pigs. The mortality rate was significantly higher in the coinfected pigs (8/10) than in the HP-PRRSV- (2/12) and SS7-infected pigs (0/10). The deceased pigs of the coinfected group had symptoms typical of PHFS, such as high fever, anorexia, and red coloration of the ears and the body. The isolation rates of HP-PRRSV and SS7 were higher and the lesion severity was greater in the coinfected pigs than in monoinfected pigs.</p> <p>Conclusion</p> <p>HP-PRRSV infection increased susceptibility to SS7 infection, and coinfection of HP-PRRSV with SS7 significantly increased the pathogenicity of SS7 to pigs.</p

    DeePMD-kit v2: A software package for Deep Potential models

    Full text link
    DeePMD-kit is a powerful open-source software package that facilitates molecular dynamics simulations using machine learning potentials (MLP) known as Deep Potential (DP) models. This package, which was released in 2017, has been widely used in the fields of physics, chemistry, biology, and material science for studying atomistic systems. The current version of DeePMD-kit offers numerous advanced features such as DeepPot-SE, attention-based and hybrid descriptors, the ability to fit tensile properties, type embedding, model deviation, Deep Potential - Range Correction (DPRc), Deep Potential Long Range (DPLR), GPU support for customized operators, model compression, non-von Neumann molecular dynamics (NVNMD), and improved usability, including documentation, compiled binary packages, graphical user interfaces (GUI), and application programming interfaces (API). This article presents an overview of the current major version of the DeePMD-kit package, highlighting its features and technical details. Additionally, the article benchmarks the accuracy and efficiency of different models and discusses ongoing developments.Comment: 51 pages, 2 figure

    Global age-sex-specific mortality, life expectancy, and population estimates in 204 countries and territories and 811 subnational locations, 1950–2021, and the impact of the COVID-19 pandemic: a comprehensive demographic analysis for the Global Burden of Disease Study 2021

    Get PDF
    Background: Estimates of demographic metrics are crucial to assess levels and trends of population health outcomes. The profound impact of the COVID-19 pandemic on populations worldwide has underscored the need for timely estimates to understand this unprecedented event within the context of long-term population health trends. The Global Burden of Diseases, Injuries, and Risk Factors Study (GBD) 2021 provides new demographic estimates for 204 countries and territories and 811 additional subnational locations from 1950 to 2021, with a particular emphasis on changes in mortality and life expectancy that occurred during the 2020–21 COVID-19 pandemic period. Methods: 22 223 data sources from vital registration, sample registration, surveys, censuses, and other sources were used to estimate mortality, with a subset of these sources used exclusively to estimate excess mortality due to the COVID-19 pandemic. 2026 data sources were used for population estimation. Additional sources were used to estimate migration; the effects of the HIV epidemic; and demographic discontinuities due to conflicts, famines, natural disasters, and pandemics, which are used as inputs for estimating mortality and population. Spatiotemporal Gaussian process regression (ST-GPR) was used to generate under-5 mortality rates, which synthesised 30 763 location-years of vital registration and sample registration data, 1365 surveys and censuses, and 80 other sources. ST-GPR was also used to estimate adult mortality (between ages 15 and 59 years) based on information from 31 642 location-years of vital registration and sample registration data, 355 surveys and censuses, and 24 other sources. Estimates of child and adult mortality rates were then used to generate life tables with a relational model life table system. For countries with large HIV epidemics, life tables were adjusted using independent estimates of HIV-specific mortality generated via an epidemiological analysis of HIV prevalence surveys, antenatal clinic serosurveillance, and other data sources. Excess mortality due to the COVID-19 pandemic in 2020 and 2021 was determined by subtracting observed all-cause mortality (adjusted for late registration and mortality anomalies) from the mortality expected in the absence of the pandemic. Expected mortality was calculated based on historical trends using an ensemble of models. In location-years where all-cause mortality data were unavailable, we estimated excess mortality rates using a regression model with covariates pertaining to the pandemic. Population size was computed using a Bayesian hierarchical cohort component model. Life expectancy was calculated using age-specific mortality rates and standard demographic methods. Uncertainty intervals (UIs) were calculated for every metric using the 25th and 975th ordered values from a 1000-draw posterior distribution. Findings: Global all-cause mortality followed two distinct patterns over the study period: age-standardised mortality rates declined between 1950 and 2019 (a 62·8% [95% UI 60·5–65·1] decline), and increased during the COVID-19 pandemic period (2020–21; 5·1% [0·9–9·6] increase). In contrast with the overall reverse in mortality trends during the pandemic period, child mortality continued to decline, with 4·66 million (3·98–5·50) global deaths in children younger than 5 years in 2021 compared with 5·21 million (4·50–6·01) in 2019. An estimated 131 million (126–137) people died globally from all causes in 2020 and 2021 combined, of which 15·9 million (14·7–17·2) were due to the COVID-19 pandemic (measured by excess mortality, which includes deaths directly due to SARS-CoV-2 infection and those indirectly due to other social, economic, or behavioural changes associated with the pandemic). Excess mortality rates exceeded 150 deaths per 100 000 population during at least one year of the pandemic in 80 countries and territories, whereas 20 nations had a negative excess mortality rate in 2020 or 2021, indicating that all-cause mortality in these countries was lower during the pandemic than expected based on historical trends. Between 1950 and 2021, global life expectancy at birth increased by 22·7 years (20·8–24·8), from 49·0 years (46·7–51·3) to 71·7 years (70·9–72·5). Global life expectancy at birth declined by 1·6 years (1·0–2·2) between 2019 and 2021, reversing historical trends. An increase in life expectancy was only observed in 32 (15·7%) of 204 countries and territories between 2019 and 2021. The global population reached 7·89 billion (7·67–8·13) people in 2021, by which time 56 of 204 countries and territories had peaked and subsequently populations have declined. The largest proportion of population growth between 2020 and 2021 was in sub-Saharan Africa (39·5% [28·4–52·7]) and south Asia (26·3% [9·0–44·7]). From 2000 to 2021, the ratio of the population aged 65 years and older to the population aged younger than 15 years increased in 188 (92·2%) of 204 nations. Interpretation: Global adult mortality rates markedly increased during the COVID-19 pandemic in 2020 and 2021, reversing past decreasing trends, while child mortality rates continued to decline, albeit more slowly than in earlier years. Although COVID-19 had a substantial impact on many demographic indicators during the first 2 years of the pandemic, overall global health progress over the 72 years evaluated has been profound, with considerable improvements in mortality and life expectancy. Additionally, we observed a deceleration of global population growth since 2017, despite steady or increasing growth in lower-income countries, combined with a continued global shift of population age structures towards older ages. These demographic changes will likely present future challenges to health systems, economies, and societies. The comprehensive demographic estimates reported here will enable researchers, policy makers, health practitioners, and other key stakeholders to better understand and address the profound changes that have occurred in the global health landscape following the first 2 years of the COVID-19 pandemic, and longer-term trends beyond the pandemic

    EFFECTS OF THERMAL MODIFICATION ON MECHANICAL AND SWELLING PROPERTIES AND COLOR CHANGE OF LUMBER KILLED BY MOUNTAIN PINE BEETLE

    No full text
    To extend the application of mountain pine beetle (MPB) killed lumber for decking, siding, and landscaping materials, it is essential to improve its dimensional stability. Thermal treatment is one of the well-established processes used to improve wood stability by modifying chemical compounds and masking blue-stains by darkening the fibre color. In this study, the MPB lumber was subjected to thermal treatment at three temperatures (195, 205, or 215°C) and three exposure times (1.5, 2, or 3 h). Based on Duncan's multiple range test, the results indicated that the volumetric swelling after thermal treatment, either from oven-dry to air-conditioned or from oven-dry to water-saturated, was significantly reduced after thermal treatment. Modulus of elasticity was increased when specimens were treated at a temperature of 195°C, and then decreased as the temperature increased. Modulus of rupture was significantly reduced as treatment temperature increased. The hardness of lumber thermal-treated at 195°C was significantly increased compared to that of the untreated lumber. At higher temperatures, hardness started to decrease slightly. With the treatment temperature increasing to 215°C for 3 h, the color difference between stained and clear wood was reduced by 75%. As a result, the blue-stains vanished gradually

    Bound Water Content and Pore Size Distribution of Thermally Modified Wood Studied by NMR

    No full text
    The physical and mechanical properties of thermally modified wood (TMW) have been comprehensively studied; however, the quantitative analysis of water states and cell wall pores of TMW is limited. In this work, Douglas fir and Norway spruce were thermally modified at 180, 200 and 220 &deg;C, and then studied by NMR cryoporometry method. The results show that thermally modified samples had lower fiber saturation point and the bound water content than the reference samples at all the experimental temperatures, indicating the reduced hygroscopicity due to thermal modification (TM). In addition, TM decreased number of hygroscopic groups, which can be implied by the decreased proportion of bound water sites, and TM also increased the proportion of small voids for bound water clusters. An increase in TM intensity resulted in lower bound water content and a smaller number of hygroscopic groups. In summary, the NMR method detected the water states and pore size distribution and confirmed that TM decreased the fiber saturation point and hygroscopicity of wood by reducing the bound water content and proportion of bound water sites in wood cell walls

    Numerical Simulation of Dynamic Response and Evaluation of Flexural Damage of RC Columns under Horizontal Impact Load

    No full text
    By using the ABAQUS finite element (FE) model, which has been verified by experiments, the deformation and internal force changes of RC columns during the impact process are investigated, and a parametric analysis is conducted under different impact kinetic energies Ek. According to the development path of the bottom bending moment-column top displacement curve under impact, the member is in a slight damage state when the curve rebounds before reaching the peak and in a moderate or severe damage state when the curve exceeds the peak, in which case the specific damage state of the member needs to be determined by examining whether there is a secondary descending stage in the curve. Accordingly, a qualitative method for evaluating the bending failure of RC column members under impact is obtained. In addition, the damage state of RC columns under impact can also be quantitatively evaluated by the ratio of the equivalent static load Feq and the ultimate static load-bearing capacity Fsu
    corecore