5,529 research outputs found

    Rotational apparent mass by electrical analogy

    Get PDF
    Electrical analogy technique for determining rotational apparent masses of body in two- dimensional fluid flo

    Phase-ordering of conserved vectorial systems with field-dependent mobility

    Full text link
    The dynamics of phase-separation in conserved systems with an O(N) continuous symmetry is investigated in the presence of an order parameter dependent mobility M(\phi)=1-a \phi^2. The model is studied analytically in the framework of the large-N approximation and by numerical simulations of the N=2, N=3 and N=4 cases in d=2, for both critical and off-critical quenches. We show the existence of a new universality class for a=1 characterized by a growth law of the typical length L(t) ~ t^{1/z} with dynamical exponent z=6 as opposed to the usual value z=4 which is recovered for a<1.Comment: RevTeX, 8 pages, 13 figures, to be published in Phys. Rev.

    Surface-directed spinodal decomposition in the pseudobinary alloy (HfO_2)_x(SiO_2)_{1-x}

    Full text link
    Hf silicate films (HfO_2)_{0.25}(SiO_2)_{0.75} with thicknesses in the range 4-20 nm were grown on silicon substrate by atomic layer deposition at 350 deg.C.The Hf distributions in as-grown and 800 deg.C annealed films were investigated by high resolution transmission electron microscopy (HRTEM), angle-resolved x-ray photoelectron spectroscopy (ARXPS) and medium energy ion scattering (MEIS). HRTEM images show a layered structure in films thinner than 8 nm. The ARXPS data also reveal a non-uniform distribution of Hf throughout the film depth. Diffusion of SiO_2 to the film surface after a longer time anneal was observed by MEIS. All these observations provide evidence for surface-directed spinodal decomposition in the pseudobinary (HfO_2)_x(SiO_2)_{1-x} alloy system.Comment: 1o figures, one tabl

    Two Modes of Solid State Nucleation - Ferrites, Martensites and Isothermal Transformation Curves

    Get PDF
    When a crystalline solid such as iron is cooled across a structural transition, its final microstructure depends sensitively on the cooling rate. For instance, an adiabatic cooling across the transition results in an equilibrium `ferrite', while a rapid cooling gives rise to a metastable twinned `martensite'. There exists no theoretical framework to understand the dynamics and conditions under which both these microstructures obtain. Existing theories of martensite dynamics describe this transformation in terms of elastic strain, without any explanation for the occurence of the ferrite. Here we provide evidence for the crucial role played by non-elastic variables, {\it viz.}, dynamically generated interfacial defects. A molecular dynamics (MD) simulation of a model 2-dimensional (2d) solid-state transformation reveals two distinct modes of nucleation depending on the temperature of quench. At high temperatures, defects generated at the nucleation front relax quickly giving rise to an isotropically growing `ferrite'. At low temperatures, the defects relax extremely slowly, forcing a coordinated motion of atoms along specific directions. This results in a twinned critical nucleus which grows rapidly at speeds comparable to that of sound. Based on our MD results, we propose a solid-state nucleation theory involving the elastic strain and non-elastic defects, which successfully describes the transformation to both a ferrite and a martensite. Our work provides useful insights on how to formulate a general dynamics of solid state transformations.Comment: 3 pages, 4 B/W + 2 color figure

    Dynamics of Phase Transitions: The 3D 3-state Potts model

    Full text link
    In studies of the QCD deconfining phase transition or cross-over by means of heavy ion experiments, one ought to be concerned about non-equilibrium effects due to heating and cooling of the system. In this paper we extend our previous study of Glauber dynamics of 2D Potts models to the 3D 3-state Potts model, which serves as an effective model for some QCD properties. We investigate the linear theory of spinodal decomposition in some detail. It describes the early time evolution of the 3D model under a quench from the disordered into the ordered phase well, but fails in 2D. Further, the quench leads to competing vacuum domains, which are difficult to equilibrate, even in the presence of a small external magnetic field. From our hysteresis study we find, as before, a dynamics dominated by spinodal decomposition. There is evidence that some effects survive in the case of a cross-over. But the infinite volume extrapolation is difficult to control, even with lattices as large as 1203120^3.Comment: 12 pages; added references, corrected typo

    Solvable Examples of Drift and Diffusion of Ions in Non-uniform Electric Fields

    Get PDF
    The drift and diffusion of a cloud of ions in a fluid are distorted by an inhomogeneous electric field. If the electric field carries the center of the distribution in a straight line and the field configuration is suitably symmetric, the distortion can be calculated analytically. We examine the specific examples of fields with cylindrical and spherical symmetry in detail assuming the ion distributions to be of a generally Gaussian form. The effects of differing diffusion coefficients in the transverse and longitudinal directions are included

    Azimuthal Correlation in Lepton-Hadron Scattering via Charged Weak-Current Processes

    Get PDF
    We consider the azimuthal correlation of the final-state particles in charged weak-current processes. This correlation provides a test of perturbative quantum chromodynamics. The azimuthal asymmetry is large in the semi-inclusive processes in which we identify a final-state hadron, say, a charged pion compared to that in the inclusive processes in which we do not identify final-state particles and use only the calorimetric information. In semi-inclusive processes the azimuthal asymmetry is more conspicuous when the incident lepton is an antineutrino or a positron than when the incident lepton is a neutrino or an electron. We analyze all the possible charged weak-current processes and study the quantitative aspects of each process. We also compare this result to the ep scattering with a photon exchange.Comment: 25 pages, 2 Postscript figures, uses RevTeX, fixes.st

    Sivers and Boer-Mulders functions in Light-Cone Quark Models

    Get PDF
    Results for the naive-time-reversal-odd quark distributions in a light-cone quark model are presented. The final-state interaction effects are generated via single-gluon exchange mechanism. The formalism of light-cone wave functions is used to derive general expressions in terms of overlap of wave-function amplitudes describing the different orbital angular momentum components of the nucleon. In particular, the model predictions show a dominant contribution from S- and P-wave interference in the Sivers function and a significant contribution also from the interference of P and D waves in the Boer-Mulders function. The favourable comparison with existing phenomenological parametrizations motivates further applications to describe azimuthal asymmetries in hadronic reactions.Comment: references and explanations added; version to appear in Phys. Rev.
    corecore