928 research outputs found

    Phase Space Reduction for Star-Products: An Explicit Construction for CP^n

    Full text link
    We derive a closed formula for a star-product on complex projective space and on the domain SU(n+1)/S(U(1)×U(n))SU(n+1)/S(U(1)\times U(n)) using a completely elementary construction: Starting from the standard star-product of Wick type on Cn+1∖{0}C^{n+1} \setminus \{ 0 \} and performing a quantum analogue of Marsden-Weinstein reduction, we can give an easy algebraic description of this star-product. Moreover, going over to a modified star-product on Cn+1∖{0}C^{n+1} \setminus \{ 0 \}, obtained by an equivalence transformation, this description can be even further simplified, allowing the explicit computation of a closed formula for the star-product on \CP^n which can easily transferred to the domain SU(n+1)/S(U(1)×U(n))SU(n+1)/S(U(1)\times U(n)).Comment: LaTeX, 17 page

    Star Products on Coadjoint Orbits

    Get PDF
    We study properties of a family of algebraic star products defined on coadjoint orbits of semisimple Lie groups. We connect this description with the point of view of differentiable deformations and geometric quantization.Comment: Talk given at the XXIII ICGTMP, Dubna (Russia) August 200

    Deformation Quantization of Coadjoint Orbits

    Get PDF
    A method for the deformation quantization of coadjoint orbits of semisimple Lie groups is proposed. It is based on the algebraic structure of the orbit. Its relation to geometric quantization and differentiable deformations is explored.Comment: Talk presented at the meeting "Noncommutative geometry and Hopf algebras in Field Theory and Particle Physics", Torino, 199

    Subalgebras with Converging Star Products in Deformation Quantization: An Algebraic Construction for \complex \mbox{\LARGE P}^n

    Full text link
    Based on a closed formula for a star product of Wick type on \CP^n, which has been discovered in an earlier article of the authors, we explicitly construct a subalgebra of the formal star-algebra (with coefficients contained in the uniformly dense subspace of representative functions with respect to the canonical action of the unitary group) that consists of {\em converging} power series in the formal parameter, thereby giving an elementary algebraic proof of a convergence result already obtained by Cahen, Gutt, and Rawnsley. In this subalgebra the formal parameter can be substituted by a real number α\alpha: the resulting associative algebras are infinite-dimensional except for the case α=1/K\alpha=1/K, KK a positive integer, where they turn out to be isomorphic to the finite-dimensional algebra of linear operators in the KKth energy eigenspace of an isotropic harmonic oscillator with n+1n+1 degrees of freedom. Other examples like the 2n2n-torus and the Poincar\'e disk are discussed.Comment: 16 pages, LaTeX with AMS Font

    Integral closure of rings of integer-valued polynomials on algebras

    Full text link
    Let DD be an integrally closed domain with quotient field KK. Let AA be a torsion-free DD-algebra that is finitely generated as a DD-module. For every aa in AA we consider its minimal polynomial μa(X)∈D[X]\mu_a(X)\in D[X], i.e. the monic polynomial of least degree such that μa(a)=0\mu_a(a)=0. The ring IntK(A){\rm Int}_K(A) consists of polynomials in K[X]K[X] that send elements of AA back to AA under evaluation. If DD has finite residue rings, we show that the integral closure of IntK(A){\rm Int}_K(A) is the ring of polynomials in K[X]K[X] which map the roots in an algebraic closure of KK of all the μa(X)\mu_a(X), a∈Aa\in A, into elements that are integral over DD. The result is obtained by identifying AA with a DD-subalgebra of the matrix algebra Mn(K)M_n(K) for some nn and then considering polynomials which map a matrix to a matrix integral over DD. We also obtain information about polynomially dense subsets of these rings of polynomials.Comment: Keywords: Integer-valued polynomial, matrix, triangular matrix, integral closure, pullback, polynomially dense set. accepted for publication in the volume "Commutative rings, integer-valued polynomials and polynomial functions", M. Fontana, S. Frisch and S. Glaz (editors), Springer 201

    Toeplitz operators on symplectic manifolds

    Full text link
    We study the Berezin-Toeplitz quantization on symplectic manifolds making use of the full off-diagonal asymptotic expansion of the Bergman kernel. We give also a characterization of Toeplitz operators in terms of their asymptotic expansion. The semi-classical limit properties of the Berezin-Toeplitz quantization for non-compact manifolds and orbifolds are also established.Comment: 40 page
    • …
    corecore