21 research outputs found

    Standardized metrics to quantify solar energy-land relationships: A global systematic review

    Get PDF
    Ground-mounted solar energy installations, including photovoltaics (PV) and concentrating solar power (CSP), can have significant environmental, ecological, and sociocultural effects via land-use and land-cover change (LULCC). Research in disciplines ranging from engineering to environmental policy seeks to quantify solar energy-land (SE-land) interactions to better understand the comprehensive impacts of solar energy installations on society. However, increasing evidence shows that scholars across research disciplines employ disparate metrics to quantify SE-land interactions. While solar energy deployment helps to achieve progress toward sustainable development goals (SDG 7- affordable and clean energy), the inconsistent use of metrics to describe SE-land interactions may inhibit the understanding of the total environmental and ecological impacts of solar energy installations, potentially causing barriers to achieve concurrent SDG's such as life on land (SDG 15). We systematically reviewed 608 sources on SE-land relationships globally to identify and assess the most frequent metric terms and units used in published studies. In total, we identified 51 unique metric terms and 34 different units of measure describing SE-land relationships across 18 countries of author origin. We organized these findings into three distinct metric categories: (1) capacity-based (i.e., nominal), (2) generation-based, and (3) human population-based. We used the most frequently reported terms and units in each category to inform a standardized suite of metrics, which are: land-use efficiency (W/m2), annual and lifetime land transformation (m2/Wh), and solar footprint (m2/capita). This framework can facilitate greater consistency in the reporting of SE-land metrics and improved capacity for comparison and aggregations of trends, including SE-land modeling projections. Our study addresses the need for standardization while acknowledging the role for future methodological advancements. The results of our study may help guide scholars toward a common vernacular and application of metrics to inform decisions about solar energy development

    Leveraging the Health and Retirement Study To Advance Palliative Care Research

    Full text link
    Background: The critical need to expand and develop the palliative care evidence base was recently highlighted by the Journal of Palliative Medicine's series of articles describing the Research Priorities in Geriatric Palliative Care. The Health and Retirement Study (HRS) is uniquely positioned to address many priority areas of palliative care research. This nationally representative, ongoing, longitudinal study collects detailed survey data every 2 years, including demographics, health and functional characteristics, information on family and caregivers, and personal finances, and also conducts a proxy interview after each subject's death. The HRS can also be linked with Medicare claims data and many other data sources, e.g., U.S. Census, Dartmouth Atlas of Health Care. Setting: While the HRS offers innumerable research opportunities, these data are complex and limitations do exist. Therefore, we assembled an interdisciplinary group of investigators using the HRS for palliative care research to identify the key palliative care research gaps that may be amenable to study within the HRS and the strengths and weaknesses of the HRS for each of these topic areas. Conclusion: In this article we present the work of this group as a potential roadmap for investigators contemplating the use of HRS data for palliative care research.Peer Reviewedhttps://deepblue.lib.umich.edu/bitstream/2027.42/140117/1/jpm.2013.0648.pd

    Floating solar panels on reservoirs impact phytoplankton populations: a modelling experiment

    Get PDF
    Floating solar photovoltaic (FPV) deployments are increasing globally as the switch to renewable energy intensifies, representing a considerable water surface transformation. FPV installations can potentially impact aquatic ecosystem function, either positively or negatively. However, these impacts are poorly resolved given the challenges of collecting empirical data for field or modelling experiments. In particular, there is limited evidence on the response of phytoplankton to changes in water body thermal dynamics and light climate with FPV. Given the importance of understanding phytoplankton biomass and species composition for managing ecosystem services, we use an uncertainty estimation approach to simulate the effect of FPV coverage and array siting location on a UK reservoir. FPV coverage was modified in 10% increments from a baseline with 0% coverage to 100% coverage for three different FPV array siting locations based on reservoir circulation patterns. Results showed that FPV coverage significantly impacted thermal properties, resulting in highly variable impacts on phytoplankton biomass and species composition. The impacts on phytoplankton were often dependent on array siting location as well as surface coverage. Changes to phytoplankton species composition were offset by the decrease in phytoplankton biomass associated with increasing FPV coverage. We identified that similar phytoplankton biomass reductions could be achieved with less FPV coverage by deploying the FPV array on the water body's faster-flowing area than the central or slower flowing areas. The difference in response dependent on siting location could be used to tailor phytoplankton management in water bodies. Simulation of water body-FPV interactions efficiently using an uncertainty approach is an essential tool to rapidly develop understanding and ultimately inform FPV developers and water body managers looking to minimise negative impacts and maximise co-benefits

    Impact of primary kidney disease on the effects of empagliflozin in patients with chronic kidney disease: secondary analyses of the EMPA-KIDNEY trial

    Get PDF
    Background: The EMPA KIDNEY trial showed that empagliflozin reduced the risk of the primary composite outcome of kidney disease progression or cardiovascular death in patients with chronic kidney disease mainly through slowing progression. We aimed to assess how effects of empagliflozin might differ by primary kidney disease across its broad population. Methods: EMPA-KIDNEY, a randomised, controlled, phase 3 trial, was conducted at 241 centres in eight countries (Canada, China, Germany, Italy, Japan, Malaysia, the UK, and the USA). Patients were eligible if their estimated glomerular filtration rate (eGFR) was 20 to less than 45 mL/min per 1·73 m2, or 45 to less than 90 mL/min per 1·73 m2 with a urinary albumin-to-creatinine ratio (uACR) of 200 mg/g or higher at screening. They were randomly assigned (1:1) to 10 mg oral empagliflozin once daily or matching placebo. Effects on kidney disease progression (defined as a sustained ≥40% eGFR decline from randomisation, end-stage kidney disease, a sustained eGFR below 10 mL/min per 1·73 m2, or death from kidney failure) were assessed using prespecified Cox models, and eGFR slope analyses used shared parameter models. Subgroup comparisons were performed by including relevant interaction terms in models. EMPA-KIDNEY is registered with ClinicalTrials.gov, NCT03594110. Findings: Between May 15, 2019, and April 16, 2021, 6609 participants were randomly assigned and followed up for a median of 2·0 years (IQR 1·5–2·4). Prespecified subgroupings by primary kidney disease included 2057 (31·1%) participants with diabetic kidney disease, 1669 (25·3%) with glomerular disease, 1445 (21·9%) with hypertensive or renovascular disease, and 1438 (21·8%) with other or unknown causes. Kidney disease progression occurred in 384 (11·6%) of 3304 patients in the empagliflozin group and 504 (15·2%) of 3305 patients in the placebo group (hazard ratio 0·71 [95% CI 0·62–0·81]), with no evidence that the relative effect size varied significantly by primary kidney disease (pheterogeneity=0·62). The between-group difference in chronic eGFR slopes (ie, from 2 months to final follow-up) was 1·37 mL/min per 1·73 m2 per year (95% CI 1·16–1·59), representing a 50% (42–58) reduction in the rate of chronic eGFR decline. This relative effect of empagliflozin on chronic eGFR slope was similar in analyses by different primary kidney diseases, including in explorations by type of glomerular disease and diabetes (p values for heterogeneity all >0·1). Interpretation: In a broad range of patients with chronic kidney disease at risk of progression, including a wide range of non-diabetic causes of chronic kidney disease, empagliflozin reduced risk of kidney disease progression. Relative effect sizes were broadly similar irrespective of the cause of primary kidney disease, suggesting that SGLT2 inhibitors should be part of a standard of care to minimise risk of kidney failure in chronic kidney disease. Funding: Boehringer Ingelheim, Eli Lilly, and UK Medical Research Council

    Comments on: Land use for United States power generation: A critical review of existing metrics with suggestions for going forward (Renewable and Sustainable Energy Reviews 2021; 143: 110911)

    No full text
    Highlights • Wachs and Engel (2021) report outcomes describing energy-land relationships. • The methodological approaches in Wachs and Engel (2021) are absent. • Results presented in Wachs and Engel (2021) should be considered with caution. • Literature reviews and analyses on land-energy relationships should be rigorous. • Fair and open standardization of metrics for land-energy relationships are needed

    Standardized metrics to quantify solar energy-land relationships:A global systematic review

    No full text
    Ground-mounted solar energy installations, including photovoltaics (PV) and concentrating solar power (CSP), can have significant environmental, ecological, and sociocultural effects via land-use and land-cover change (LULCC). Research in disciplines ranging from engineering to environmental policy seeks to quantify solar energy-land (SE-land) interactions to better understand the comprehensive impacts of solar energy installations on society. However, increasing evidence shows that scholars across research disciplines employ disparate metrics to quantify SE-land interactions. While solar energy deployment helps to achieve progress toward sustainable development goals (SDG 7- affordable and clean energy), the inconsistent use of metrics to describe SE-land interactions may inhibit the understanding of the total environmental and ecological impacts of solar energy installations, potentially causing barriers to achieve concurrent SDG's such as life on land (SDG 15). We systematically reviewed 608 sources on SE-land relationships globally to identify and assess the most frequent metric terms and units used in published studies. In total, we identified 51 unique metric terms and 34 different units of measure describing SE-land relationships across 18 countries of author origin. We organized these findings into three distinct metric categories: (1) capacity-based (i.e., nominal), (2) generation-based, and (3) human population-based. We used the most frequently reported terms and units in each category to inform a standardized suite of metrics, which are: land-use efficiency (W/m2), annual and lifetime land transformation (m2/Wh), and solar footprint (m2/capita). This framework can facilitate greater consistency in the reporting of SE-land metrics and improved capacity for comparison and aggregations of trends, including SE-land modeling projections. Our study addresses the need for standardization while acknowledging the role for future methodological advancements. The results of our study may help guide scholars toward a common vernacular and application of metrics to inform decisions about solar energy development
    corecore