678 research outputs found

    EVALUATION OF THERMAL AND MECHANICAL PROPERTIES OF DEMONSTRATION WALL UTILIZING PHASE CHANGE CEMENTITIOUS MATERIALS

    Get PDF
    International project PoroPCM involves partners from Germany, Czech Republic, Spain and Japan with the objective to develop new multifunctional Phase Change Materials modified porous cementitious nanocomposite (PoroPCM). Such material can be utilized for storing heat energy in the insulation layer of buildings compared to commonly used insulation materials since the phase change increases heat capacity. This enhanced feature reduces the amount of energy necessary for running the heating/cooling system. For the testing of the newly developed phase change cementitious composite a demonstration wall will be developed and tested for its thermal as well as mechanical performance. The topic of the paper is the description of the properties of the new phase change cementitious nanocomposite. The main emphasis of the paper is the description of the demonstration wall behaviour under typical environmental conditions. The wall design is supported by numerical simulation of the wall physical parameters. The numerical modelling involves the definition of suitable numerical models for the simulation of the thermal properties of the new phase change nanocomposite. The numerical model is then used to demonstrate the performance of the wall layer design. The presented pilot results show efficiency increase of the insulation material in the range 15–70%. Also modelling of wind resistance of the layered structure is included. The developed wall design and PoroPCM material will be tested and verified by a large scale test in the final year of the project

    Integration of reverse engineering and ultrasonic non-contact testing procedures for quality assessment of CFRP aeronautical components

    Get PDF
    Abstract Nowadays, the quality assurance of aeronautical components is a very crucial issue. Diverse defects can be generated during composite material components manufacturing such as voids, delamination, cracks, etc. The identification of these defects requires the use of different types of inspection methods. In this paper, two diverse non-contact inspection techniques, i.e. a laser-based reverse engineering method and an ultrasonic testing procedure, are integrated to provide a complete quality assessment of carbon fibre reinforced polymer components for applications in the aeronautical field. A custom made software code was developed in order to create a user interface allowing for the visualization and analysis of the reverse engineering and ultrasonic information for the detection of geometrical and internal flaws of the component under inspection

    The finding of vascular and urinary anomalies in the harvested kidney for transplantation.

    Get PDF
    INTRODUCTION: In kidney transplantation, anatomical vascular and excretory anomalies may represent causes of failure. Today's surgical techniques have made the most of the organs with anatomic anomalies and iatrogenic injury successfully used for transplantation. MATERIALS AND METHODS: From January 2000 to June 2006, we harvested 230 kidneys, of including 88 kidneys (20%) with vascular, urinary, or vascular-urinary anomalies; 64 kidneys were implanted and 15 were sent to other transplantation centers. Only 9 kidneys were not appropriate for transplantation. RESULTS: All patients who received kidneys with the above-mentioned anomalies were carefully examined after the transplantation and short-term and long-term complications were evaluated with respect to controls without anomalies. DISCUSSION: Renal anatomic anomalies are frequently observed during kidney transplantation and may produce postsurgical complications. However, the presence of these anomalies does not necessarily imply the impossibility of using the kidney for a transplant, especially because of improved surgical techniques. Our experience in transplantation procedures showed that even if kidneys present the above-mentioned anomalies they can still be considered appropriate for transplantation when we perform a correct harvesting/back-table transplant surgery. So vascular and urinary anomalies have to be considered always an incentive to research new surgical solutions and to perform a careful surgical technique

    Suppressed-scattering spectral windows for radiative cooling applications

    Get PDF
    The scattering of light by resonant nanoparticles is a key process for enhancing the solar reflectance in daylight radiative cooling. Here, we investigate the impact of material dispersion on the scattering performance of popular nanoparticles for radiative cooling applications. We show that, due to material dispersion, nanoparticles with a qualitatively similar response at visible frequencies exhibit fundamentally different scattering properties at infrared frequencies. It is found that dispersive nanoparticles exhibit suppressed-scattering windows, allowing for selective thermal emission within a highly reflective sample. The existence of suppressed-scattering windows solely depends on material dispersion, and they appear pinned to the same wavelength even in random composite materials and periodic metasurfaces. Finally, we investigate calcium-silicate-hydrate (CSH), the main phase of concrete, as an example of a dispersive host, illustrating that the co-design of nanoparticles and host allows for tuning of the suppressed-scattering windows. Our results indicate that controlled nanoporosities would enable concrete with daylight passive radiative cooling capabilities

    Transplantation and young surgeons in italy

    Get PDF
    The relation between young surgeons and transplantation has always been a "love and hate" one. Until a few years ago this branch of surgery was seen as pioneering, with extreme and and extensive training, and was reserved to few elected members. Nowadays things are different. In this article we try to understand the true reasons that young Italian surgeons avoid transplantation surgery

    Whole Genome Sequencing Provides Information on the Genomic Architecture and Diversity of Cultivated Gilthead Seabream (Sparus aurata) Broodstock Nuclei

    Get PDF
    The gilthead seabream (Sparus aurata) is a species of relevance for the Mediterranean aquaculture industry. Despite the advancement of genetic tools for the species, breeding programs still do not often include genomics. In this study, we designed a genomic strategy to identify signatures of selection and genomic regions of high differentiation among populations of farmed fish stocks. A comparative DNA pooling sequencing approach was applied to identify signatures of selection in gilthead seabream from the same hatchery and from different nuclei that had not been subjected to genetic selection. Identified genomic regions were further investigated to detect SNPs with predicted high impact. The analyses underlined major genomic differences in the proportion of fixed alleles among the investigated nuclei. Some of these differences highlighted genomic regions, including genes involved in general metabolism and development already detected in QTL for growth, size, skeletal deformity, and adaptation to variation of oxygen levels in other teleosts. The obtained results pointed out the need to control the genetic effect of breeding programs in this species to avoid the reduction of genetic variability within populations and the increase in inbreeding level that, in turn, might lead to an increased frequency of alleles with deleterious effects

    LIPSS applied to wide bandgap semiconductors and dielectrics: assessment and future perspectives

    Get PDF
    With the aim of presenting the processes governing the Laser-Induced Periodic Surface Structures (LIPSS), its main theoretical models have been reported. More emphasis is given to those suitable for clarifying the experimental structures observed on the surface of wide bandgap semiconductors (WBS) and dielectric materials. The role played by radiation surface electromagnetic waves as well as Surface Plasmon Polaritons in determining both Low and High Spatial Frequency LIPSS is briefly discussed, together with some experimental evidence. Non-conventional techniques for LIPSS formation are concisely introduced to point out the high technical possibility of enhancing the homogeneity of surface structures as well as tuning the electronic properties driven by point defects induced in WBS. Among these, double-or multiple-fs-pulse irradiations are shown to be suitable for providing further insight into the LIPSS process together with fine control on the formed surface structures. Modifications occurring by LIPSS on surfaces of WBS and dielectrics display high potentialities for their cross-cutting technological features and wide applications in which the main surface and electronic properties can be engineered. By these assessments, the employment of such nanostructured materials in innovative devices could be envisaged

    Costs associated with febrile neutropenia in solid tumor and lymphoma patients - an observational study in Singapore.

    Get PDF
    BackgroundThe primary objective was to describe the total direct inpatient costs among solid tumor and lymphoma patients with chemotherapy-induced febrile neutropenia (FN) and the factors that were associated with higher direct cost. The secondary objective was to describe the out-of-pocket patient payments and the factors that were associated with higher out-of-pocket patient payments.MethodsThis was a single-center observational study conducted at the largest cancer center in Singapore. All of the adult cancer patients hospitalized due to FN from 2009 to 2012 were studied. The primary outcomes were the total hospital cost and the out-of-pocket patient payments (adjusted by government subsidy) per FN episode. Univariate analysis and multiple linear regression were conducted to identify the factors associated with higher FN costs.ResultsThree hundred and sixty seven adult cancer patients were documented with FN-related hospitalizations. The mean total hospital cost was US4,193(954,193 (95% CI: US3,779-4,607) and the mean out-of-pocket patient payment was US2,230(952,230 (95% CI: US1,976-2,484), per FN episode. The factors associated with a higher total hospital cost were longer length of stay, severe sepsis, and lymphoma as underlying cancer. The out-of-pocket patient payment was positively associated with longer length of stay, severe sepsis, lymphoma diagnosed as underlying cancer, the therapeutic use of granulocyte colony-stimulating factor (GCSF), the private ward class, and younger patients.ConclusionsThe total hospital cost and out-of-pocket patient payments of FN management in lymphoma cases were substantial compared with other solid tumors. Factors associated with a higher FN management cost may be useful for developing appropriate strategies to reduce the cost of FN for cancer patients

    Potential Use of Bio-Oleogel as Phase Change Material

    Get PDF
    Two bio-oleogels were investigated. These materials were produced with a combination of canola and soybean oil with 4, 6, 8, and 10% of beeswax (by weight). Sensible heat storage capacity, melting parameters, and enthalpies were investigated by the differential scanning calorimetry (DSC) test. An ordinary DSC dynamic test was performed. Cycles of heating and cooling were performed, as well as tests with different heating rates. According to the results, the materials present a melting temperature between −16 to −12 °C and a total latent heat between 22.9 and 367.6 J/g. BC10 (canola oil with 10% beeswax) was the sample with the best performance, with a latent heat of 367.6 J/g and a melting temperature of −13.6 °C, demonstrating its possible use as a phase change material for cold storage
    • …
    corecore