18 research outputs found

    Novel carvedilol paediatric nanomicelle formulation: in-vitro characterization and in-vivo evaluation

    Get PDF
    Objectives Carvedilol (CAR) is a poorly water-soluble beta-blocker. Its encapsu-lation within nanomicelles (NMs) could improve drug solubility and its oralbioavailability, allowing the development of a paediatric liquid CAR formulationwith commercially available copolymers: D-a-tocopheryl polyethylene glycol1000 succinate (TPGS) and poly(vinyl caprolactam)-poly(vinyl acetate)-poly(ethylene glycol) (Soluplusâ).Methods Drug-loaded NMs were prepared by copolymer and CAR dispersion indistilled water. Micellar size and morphology were characterized by dynamic lightscattering and transmission electron microscopy, respectively. In-vitro drug per-meation studies were evaluated by conventional gut sac method. In-vivo CARoral bioavailability from NMs dispersions and drug control solution was evalu-ated in Wistar rats.Key findings Carvedilol apparent aqueous solubility was increased (up to 60.4-folds) after its encapsulation within NMs. The micellar size was ranged between10.9 and 81.9 nm with a monomodal size distribution. There was a significantenhancement of CAR relative oral bioavailability for both copolymers vs amicelle-free drug solution (P < 0.05). This improvement was higher for TPGS-based micelles (4.95-fold) in accordance with the in-vitro CAR permeationresults.Conclusions The present investigation demonstrates the development of highlyconcentrated CAR liquid micellar formulation. The improvement on drug oralbioavailability contributes to the potential of this NMs formulation to enhanceCAR paediatric treatment.Fil: Wegmann, Marcel. Hochschule Furtwangen University; AlemaniaFil: Parola, Luciano. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Bertera, Facundo Martin. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Taira, Carlos Alberto. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Cagel, Carlos Maximiliano. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Buontempo, Fabián. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; ArgentinaFil: Bernabeu, Ezequiel Adrian. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Höcht, Christian. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica. Departamento de Farmacología; ArgentinaFil: Chiappetta, Diego Andrés. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; ArgentinaFil: Moretton, Marcela Analía. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Houssay; Argentina. Universidad de Buenos Aires. Facultad de Farmacia y Bioquímica; Argentin

    Sertoli Cells Loaded with Doxorubicin in Lipid Micelles Reduced Tumor Burden and Dox-Induced Toxicity

    No full text
    The toxic side effects of doxorubicin (Dox) limit its long-term use as a lung cancer chemotherapeutic. Additionally, drug delivery to the deep lung is challenging. To address these challenges, isolated rat Sertoli cells (SCs) were preloaded with Dox conjugated to lipid micelle nanoparticles (SC-DLMNs) and delivered to mouse lungs. These immunocompetent cells, when injected intravenously, travel to the lung, deliver the payload, and get cleared by the system quickly without causing any adverse reaction. We observed that SC-DLMNs effectively treated Lewis lung carcinoma 1-induced lung tumors in mice and the drug efficacy was comparable to SC-Dox treatment. Mice treated with SC-DLMNs also showed significantly less toxicity compared to those treated with SC-Dox. The encapsulation of Dox in lipid micelle nanoparticles reduced the toxicity of Dox and the SC-based delivery method ensured drug delivery to the deep lung without evoking any immune response. Taken together, these results provide a novel SC-based nanoparticle drug delivery method for improved therapeutic outcome of cardiotoxic antilung cancer drugs
    corecore