239 research outputs found

    Intermediate steps in the formation of neuronal SNARE complexes

    Get PDF
    Neuronal exocytosis requires the assembly of three SNARE proteins, syntaxin and SNAP25 on the plasma membrane and synaptobrevin on the vesicle membrane. However, the precise steps in this process and the points at which assembly and fusion are controlled by regulatory proteins are unclear. In the present work, we examine the kinetics and intermediate states during SNARE assembly in vitro using a combination of time resolved fluorescence and EPR spectroscopy. We show that syntaxin rapidly forms a dimer prior to forming the kinetically stable 2:1 syntaxin:SNAP25 complex, and that the 2:1 complex is not diminished by the presence of excess SNAP25. Moreover, the 2:1 complex is temperature dependent with a reduced concentration at 37°C. The two segments of SNAP25 behave differently. The N-terminal SN1 segment of SNAP25 exhibits a pronounced increase in backbone ordering from the N- to the C-terminus that is not seen in the C-terminal SNAP25 segment SN2. Both the SN1 and SN2 segments of SNAP25 will assemble with syntaxin; however, while the association of the SN1 segment with syntaxin produces a stable 2:2 (SN1:syntaxin) complex, the complex formed between SN2 and syntaxin is largely disordered. Synaptobrevin fails to bind syntaxin alone, but will associate with syntaxin in the presence of either the SN1 or SN2 segments; however, the synaptobrevin:syntaxin:SN2 complex remains disordered. Taken together, these data suggest that synaptobrevin and syntaxin do not assemble in the absence of SNAP25, and that the SN2 segment of SNAP25 is the last to enter the SNARE complex

    DLP-Printable Porous Cryogels for 3D Soft Tactile Sensing

    Get PDF
    Three-Dimensional (3D) printed porous materials hold the potential for various soft sensing applications due to their remarkable flexibility, low density, and customizable geometries. However, developing versatile and efficient fabrication methods is crucial to unlock their full potential. A novel approach is introduced by combining Digital Light Processing (DLP) 3D printing and freeze-drying to manufacture deformable cryogels featuring intricate morphologies. Photocurable hydrogels based on Poly(3,4-ethylenedioxythiophene)Polystyrene sulfonate (PEDOT:PSS), Polyethylene glycol Diacrylate (PEGDA) and Ethylene Glycol (EG) are successfully printed and lyophilized. In this way, porous cryogels with tailorable properties are achieved. Microporosity varies from 68% to 96%, according to the chemical composition. Ultra-soft cryogels with a compressive modulus of 0.13MPa are fabricated by adding a reactive diluent. As a result of the cryogelation process, which effectively removes water from the hydrogels, microporous structures with details as fine as 100 mu m are obtained. The achieved freedom of design is exploited to fabricate resistive force sensors with a honeycomb lattice morphology. The sensitivity and the working range of the sensors can be tailored by tuning the size of the cells, paving the way for sensors with programmable architectures that can meet diverse requirements.A dual-step approach combining Digital Light Processing (DLP) 3D printing and lyophilization transforms printed hydrogels into porous cryogels with complex shapes. Porosity and mechanical properties are finely controlled based on the chemical composition of starting formulations. Microporous cryogels with details down to 100 mu m are printed. Proof-of-concept scalable soft force sensors show a tuneable response based on the geometry of the core 3D honeycomb architecture. imag

    How Different Stocking Densities Affect Growth and Stress Status of Acipenser baerii Early Stage Larvae

    Get PDF
    In the present study, a multidisciplinary approach was used in order to evaluate growth, muscle development, and stress status in Siberian sturgeon Acipenser baerii larvae at schooling (T1) and complete yolk sac absorption (T2), reared at three stocking densities (low, medium, and high). Larvae growth, morphological muscle development, and whole-body cortisol levels were assessed. The expression of genes involved in the growth process (igf1 and igf2), in the myogenesis (myog), and in the regulation of cellular stress (glut1, glut2, glut4, and hsp70) was analyzed using a quantitative PCR. Larvae reared at lower densities showed a higher Specific Growth Rate and showed a physiological muscle development. Cortisol levels were low and did not differ significantly, both in different time sampling and across densities, suggesting that either the considered densities are not stressors in this species in the early stages of development or the hypothalamus-pituitary-adrenal (HPA) axis is not yet fully mature. Gene expression of glut1, igf1, and igf2 showed an up-regulation in both developmental stages at all the rearing densities considered, while myog significantly up-regulated at T1 at the highest density. Considering all of the results, it would seem that lower densities should be used in these stages of development, as these showed a higher growth rate, even if it is not economically feasible in commercial hatcheries. Therefore, choosing an intermediate stocking density could be a good compromise between larval performance and economical feasibility

    Red mark syndrome: Is the aquaculture water microbiome a keystone for understanding the disease aetiology?

    Get PDF
    Aquaculture significantly contributes to the growing demand for food worldwide. However, diseases associated with intensive aquaculture conditions, especially the skin related syndromes, may have significant implications on fish health and industry. In farmed rainbow trout, red mark syndrome (RMS), which consists of multiple skin lesions, currently lacks recognized aetiological agents, and increased efforts are needed to elucidate the onset of these conditions. Most of the past studies were focused on analyzing skin lesions, but no study focused on water, a medium constantly interacting with fish. Indeed, water tanks are environmental niches colonized by microbial communities, which may be implicated in the onset of the disease. Here, we present the results of water and sediment microbiome analyses performed in an RMS-affected aquaculture facility, bringing new knowledge about the environmental microbiomes harbored under these conditions. On the whole, no significant differences in the bacterial community structure were reported in RMS-affected tanks compared to the RMS-free ones. However, we highlighted significant differences in microbiome composition when analyzing different samples source (i.e., water and sediments). Looking at the finer scale, we measured significant changes in the relative abundances of specific taxa in RMS-affected tanks, especially when analyzing water samples. Our results provide worthwhile insight into a mostly uncharacterized ecological scenario, aiding future studies on the aquaculture built environment for disease prevention and monitoring

    Demodicosis in a captive African straw-coloured fruit bat (Eidolon helvum).

    Get PDF
    Demodicosis is most frequently observed in the domestic dog (Canis familiaris), but it has rarely been reported in bats (Chiroptera). The overpopulation of Demodex spp. that causes dermatological changes is generally associated with a compromised immune system. We describe the gross and histological features of generalized demodicosis in an adult female African straw-coloured fruit bat (Eidolon helvum) drawn from a captive research colony. The histology of the lesions revealed comedones and follicular infundubular cysts harbouring numerous Demodex spp. mites, eliciting a minimal inflammatory response in the adjacent dermis. The histological examination of a full set of tissues did not reveal clear evidence of immunosuppression, although a clinical history of recent abortion and possible stressors due to captivity could be considered risk factors for the demodicosis. Attempts to determine the Demodex species using PCR on DNA extracted from the formalin fixed paraffin embedded tissue failed. This is the first clinical and histological description of demodicosis in Eidolon helvum

    Detection and genetic characterization of domestic cat hepadnavirus in cats with cavitary effusions

    Get PDF
    : After the identification of the novel domestic cat hepadnavirus (DCH) in 2018, its potential pathogenetic role in feline hepatic diseases has been suggested. Following the detection of DCH in a cat's serum and peritoneal effusion, the aim of this study was to retrospectively investigate the presence of DCH in cats with and without cavitary effusions along with DCH presence in effusions. Stored serum and effusion samples from cats with and without effusions admitted to the Veterinary Teaching Hospital of Lodi (Italy) in 2020-2022 were included based on results of hematobiochemical parameters. Effusions were classified based on cytological and physicochemical findings. The likelihood of liver damage was estimated based on clinical and laboratory findings. Samples were tested for DCH presence by quantitative PCR (qPCR). Positive samples were subjected to whole genome sequencing and phylogenetic analysis. DCH was detected in both serum and peritoneal effusion samples of 2/72 (2.8%) enrolled cats, included in the group with effusions (2/33; 6.1%), with one cat showing inflammatory and the other non-inflammatory effusion. Both DCH-positive cats belonged to the group with a likelihood of liver damage (2/22, 9.1%). Phylogeny showed that the DCH sequences from this study clustered with the prototypic Australian strain but were not included in the clade with other Italian DCH sequences. Results suggest the circulation of different DCH variants in Italy and show the presence of DCH in effusion samples from DCH-positive cats, mirroring the presence of HBV in body fluids from HBV-infected humans. Further studies are still recommended to define the pathogenic role of DCH in cats

    PtdInsP(2) and PtdSer cooperate to trap synaptotagmin-1 to the plasma membrane in the presence of calcium.

    No full text
    The Ca2+-sensor synaptotagmin-1 that triggers neuronal exocytosis binds to negatively charged membrane lipids (mainly phosphatidylserine (PtdSer) and phosphoinositides (Ptdlns)) but the molecular details of this process are not fully understood. Using quantitative thermodynamic, kinetic and structural methods, we show that synaptotagmin-1 (from Rattus norvegicus and expressed in Escherichia coli) binds to Ptdlns(4,5)P-2 via a polybasic lysine patch in the C2B domain, which may promote the priming or docking of synaptic vesicles. Ca2+ neutralizes the negative charges of the Ca2+-binding sites, resulting in the penetration of synaptotagmin-1 into the membrane, via binding of PtdSer, and an increase in the affinity of the polybasic lysine patch to phosphatidylinositol-4,5-bisphosphate (PtdIns(4,5)P-2). These Ca2+-induced events decrease the dissociation rate of synaptotagmin-1 membrane binding while the association rate remains unchanged. We conclude that both membrane penetration and the increased residence time of synaptotagmin-1 at the plasma membrane are crucial for triggering exocytotic membrane fusion
    corecore