19 research outputs found

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument

    The Habitable Exoplanet Observatory (HabEx) Mission Concept Study Final Report

    Get PDF
    The Habitable Exoplanet Observatory, or HabEx, has been designed to be the Great Observatory of the 2030s. For the first time in human history, technologies have matured sufficiently to enable an affordable space-based telescope mission capable of discovering and characterizing Earthlike planets orbiting nearby bright sunlike stars in order to search for signs of habitability and biosignatures. Such a mission can also be equipped with instrumentation that will enable broad and exciting general astrophysics and planetary science not possible from current or planned facilities. HabEx is a space telescope with unique imaging and multi-object spectroscopic capabilities at wavelengths ranging from ultraviolet (UV) to near-IR. These capabilities allow for a broad suite of compelling science that cuts across the entire NASA astrophysics portfolio. HabEx has three primary science goals: (1) Seek out nearby worlds and explore their habitability; (2) Map out nearby planetary systems and understand the diversity of the worlds they contain; (3) Enable new explorations of astrophysical systems from our own solar system to external galaxies by extending our reach in the UV through near-IR. This Great Observatory science will be selected through a competed GO program, and will account for about 50% of the HabEx primary mission. The preferred HabEx architecture is a 4m, monolithic, off-axis telescope that is diffraction-limited at 0.4 microns and is in an L2 orbit. HabEx employs two starlight suppression systems: a coronagraph and a starshade, each with their own dedicated instrument.Comment: Full report: 498 pages. Executive Summary: 14 pages. More information about HabEx can be found here: https://www.jpl.nasa.gov/habex

    Flucytosine Pharmacokinetics in a Critically Ill Patient Receiving Continuous Renal Replacement Therapy

    Get PDF
    Purpose. A case report evaluating flucytosine dosing in a critically ill patient receiving continuous renal replacement therapy. Summary. This case report outlines an 81-year-old male who was receiving continuous venovenous hemofiltration (CVVH) for acute renal failure and was being treated with flucytosine for the treatment of disseminated Cryptococcus neoformans infection. Due to patient specific factors, flucytosine was empirically dose adjusted approximately 50% lower than intermittent hemodialysis (iHD) recommendations and approximately 33% lower than CRRT recommendations. Peak and trough levels were obtained, which were supratherapeutic, and pharmacokinetic parameters were calculated. The patient experienced thrombocytopenia, likely due to elevated flucytosine levels, and flucytosine was ultimately discontinued. Conclusion. Despite conservative flucytosine dosing for a patient receiving CVVH, peak and trough serum flucytosine levels were supratherapeutic (120 μg/mL at 2 hours and 81 μg/mL at 11.5 hours), which increased drug-related adverse effects. The results indicate that this conservative dosing regimen utilizing the patient’s actual body weight was too aggressive. This case report provides insight into flucytosine dosing in CVVH, a topic that has not been investigated previously. Further pharmacokinetic studies of flucytosine dosing in critically ill patients receiving CVVH are needed in order to optimize pharmacokinetic and pharmacodynamic parameters while avoiding toxic flucytosine exposure

    Metabarcoding of environmental samples suggest wide distribution of eelgrass (Zostera marina) pathogens in the north Pacific

    No full text
    Seagrass meadows provide important ecological services to the marine environment but are declining worldwide. Although eelgrass meadows in the north Pacific are thought to be relatively healthy, few studies have assessed the presence of known disease pathogens in these meadows. In a pilot study to test the efficacy of the methods and to provide foundational disease biodiversity data in the north Pacific, we leveraged metabarcoding of environmental DNA extracted from water, sediment, and eelgrass tissue samples collected from five widely distributed eelgrass meadows in Alaska and one in Japan and uncovered wide prevalence of two classes of pathogenic organisms – Labyrinthula zosterae and other associated strains of Labyrinthula, and the Phytophthora/Halophytophthora blight species complex – known to have caused decline in eelgrass (Zostera marina) elsewhere in the species’ global distribution. Although the distribution of these disease organisms is not well understood in the north Pacific, we uncovered the presence of at least one eelgrass pathogen at every locality sampled

    Breast cancer patients from the Midwest region of the United States have reduced levels of short-chain fatty acid-producing gut bacteria

    No full text
    Abstract As geographical location can impact the gut microbiome, it is important to study region-specific microbiome signatures of various diseases. Therefore, we profiled the gut microbiome of breast cancer (BC) patients of the Midwestern region of the United States. The bacterial component of the gut microbiome was profiled utilizing 16S ribosomal RNA sequencing. Additionally, a gene pathway analysis was performed to assess the functional capabilities of the bacterial microbiome. Alpha diversity was not significantly different between BC and healthy controls (HC), however beta diversity revealed distinct clustering between the two groups at the species and genera level. Wilcoxon Rank Sum test revealed modulation of several gut bacteria in BC specifically reduced abundance of those linked with beneficial effects such as Faecalibacterium prausnitzii. Machine learning analysis confirmed the significance of several of the modulated bacteria found by the univariate analysis. The functional analysis showed a decreased abundance of SCFA (propionate) production in BC compared to HC. In conclusion, we observed gut dysbiosis in BC with the depletion of SCFA-producing gut bacteria suggesting their role in the pathobiology of breast cancer. Mechanistic understanding of gut bacterial dysbiosis in breast cancer could lead to refined prevention and treatment

    Targeted degradation of sense and antisense C9orf72 RNA foci as therapy for ALS and frontotemporal degeneration

    No full text
    Expanded hexanucleotide repeats in the chromosome 9 open reading frame 72 (C9orf72) gene are the most common genetic cause of ALS and frontotemporal degeneration (FTD). Here, we identify nuclear RNA foci containing the hexanucleotide expansion (GGGGCC) in patient cells, including white blood cells, fibroblasts, glia, and multiple neuronal cell types (spinal motor, cortical, hippocampal, and cerebellar neurons). RNA foci are not present in sporadic ALS, familial ALS/FTD caused by other mutations (SOD1, TDP-43, or tau), Parkinson disease, or nonneurological controls. Antisense oligonucleotides (ASOs) are identified that reduce GGGGCC-containing nuclear foci without altering overall C9orf72 RNA levels. By contrast, siRNAs fail to reduce nuclear RNA foci despite marked reduction in overall C9orf72 RNAs. Sustained ASO-mediated lowering of C9orf72 RNAs throughout the CNS of mice is demonstrated to be well tolerated, producing no behavioral or pathological features characteristic of ALS/FTD and only limited RNA expression alterations. Genome-wide RNA profiling identifies an RNA signature in fibroblasts from patients with C9orf72 expansion. ASOs targeting sense strand repeat-containing RNAs do not correct this signature, a failure that may be explained, at least in part, by discovery of abundant RNA foci with C9orf72 repeats transcribed in the antisense (GGCCCC) direction, which are not affected by sense strand-targeting ASOs. Taken together, these findings support a therapeutic approach by ASO administration to reduce hexanucleotide repeat-containing RNAs and raise the potential importance of targeting expanded RNAs transcribed in both directions
    corecore