97 research outputs found

    Social media for academic programs & departments

    Get PDF
    Social media for organizations, such as an academic department or a degree program, consist of a range of web-based applications that allow anyone to disseminate information to online communities. The principle reasons for creating a social media presence for an academic department or program include: (1) Create an online social community for current students; (2) Create an extended community of alumni and friends; and (3) Create an awareness of the department or program among potential students

    Density Functional Theory Study of Ni Clusters Supported on the ZrO2(111) Surface

    Get PDF
    The nickel/zirconia (Ni/ZrO2) interface plays a key role in the performance of the anode of solid oxide fuel cells (SOFC) and it is therefore important to understand the interaction between nickel nanoparticles and the ZrO2 surface. Here, we have described the interaction of five Nin (n = 1–5) clusters with the (111) surface of cubic zirconia, c‐ZrO2(111), using spin polarized density functional theory (DFT) calculations with inclusion of long‐range dispersion forces. We have systematically evaluated the geometric and electronic structure of different cluster configurations and sizes and shown how the clusters interact with the oxygen and zirconium surface atoms. The cluster‐surface interaction is characterized by a charge transfer from the Ni clusters to the surface. From calculations of the hopping rate and clustering energies, we have demonstrated that Ni atoms prefer to aggregate rather than wet the surface and we would therefore suggest that modifications in the synthesis could be needed to modify the coalescence of the supported metal particles of this catalytic system

    Density functional theory study of the interaction of H2O, CO2 and CO with the ZrO2 (111), Ni/ZrO2 (111), YSZ (111) and Ni/YSZ (111) surfaces

    Get PDF
    The triple phase boundary (TPB), where the gas phase, Ni particles and the yttria-stabilised zirconia (YSZ) surface meet, plays a significant role in the performance of solid oxide fuel cells (SOFC). Indeed, the key reactions take place at the TPB, where molecules such as H2O, CO2 and CO interact and react. We have systematically studied the interaction of H2O, CO2 and CO with the dominant surfaces of four materials that are relevant to SOFC, i.e. ZrO2(111), Ni/ZrO2(111), YSZ(111) and Ni/YSZ(111) of cubic ZrO2 stabilized with 9% of yttria (Y2O3). The study employed spin polarized density functional theory (DFT), taking into account the long-range dispersion forces. We have investigated up to five initial adsorption sites for the three molecules and have identified the geometries and electronic structures of the most stable adsorption configurations. We have also analysed the vibrational modes of the three molecules in the gas phase and compared them with the adsorbed molecules. A decrease of the wavenumbers of the vibrational modes for the three adsorbed molecules was observed, confirming the influence of the surface on the molecules' intra-molecular bonds. These results are in line with the important role of Ni in this system, in particular for the CO adsorption and activation

    A DFT+U study of the oxidation of cobalt nanoparticles: Implications for biomedical applications

    Get PDF
    Nanomaterials – magnetic nanoparticles in particular have been shown to have significant potential in cancer theranostics, where iron oxides are commonly the materials of choice. While biocompatibility presents an advantage, the low magnetisation is a barrier to their widespread use. As a result, highly magnetic cobalt nanoparticles are attracting increasing attention as a promising alternative. Precise control of the physiochemical properties of such magnetic systems used in biomedicine is crucial, however, it is difficult to test their behaviour in vivo. In the present work, density functional theory calculations with the Dudarev approach (DFT+U) have been used to model the adsorption of oxygen on low Miller index surfaces of the hexagonal phase of cobalt. In vivo conditions of temperature and oxygen partial pressure in the blood have been considered, and the effects of oxidation on the overall properties of cobalt nanoparticles are described. It is shown that oxygen adsorbs spontaneously on all surfaces with the formation of non-magnetic cobalt tetroxide, Co3O4, at body temperature, confirming that, despite their promising magnetic properties, bare cobalt nanoparticles would not be suitable for biomedical applications. Surface modifications could be designed to preserve their favourable characteristics for future utilisation

    Interaction of SO2 with the Platinum (001), (011), and (111) Surfaces: A DFT Study

    Get PDF
    Given the importance of SO2 as a pollutant species in the environment and its role in the hybrid sulphur (HyS) cycle for hydrogen production, we carried out a density functional theory study of its interaction with the Pt (001), (011), and (111) surfaces. First, we investigated the adsorption of a single SO2 molecule on the three Pt surfaces. On both the (001) and (111) surfaces, the SO2 had a S,O-bonded geometry, while on the (011) surface, it had a co-pyramidal and bridge geometry. The largest adsorption energy was obtained on the (001) surface (Eads = −2.47 eV), followed by the (011) surface (Eads = −2.39 and −2.28 eV for co-pyramidal and bridge geometries, respectively) and the (111) surface (Eads = −1.85 eV). When the surface coverage was increased up to a monolayer, we noted an increase of Eads/SO2 for all the surfaces, but the (001) surface remained the most favourable overall for SO2 adsorption. On the (111) surface, we found that when the surface coverage was θ > 0.78, two neighbouring SO2 molecules reacted to form SO and SO3. Considering the experimental conditions, we observed that the highest coverage in terms of the number of SO2 molecules per metal surface area was (111) > (001) > (011). As expected, when the temperature increased, the surface coverage decreased on all the surfaces, and gradual desorption of SO2 would occur above 500 K. Total desorption occurred at temperatures higher than 700 K for the (011) and (111) surfaces. It was seen that at 0 and 800 K, only the (001) and (111) surfaces were expressed in the morphology, but at 298 and 400 K, the (011) surface was present as well. Taking into account these data and those from a previous paper on water adsorption on Pt, it was evident that at temperatures between 400 and 450 K, where the HyS cycle operates, most of the water would desorb from the surface, thereby increasing the SO2 concentration, which in turn may lead to sulphur poisoning of the catalyst

    Humanistic burden in schizophrenia: a literature review.

    Get PDF
    Abstract Objectives of the study and background Schizophrenia is a complex disease that affects 1% of the population. This disease has a considerable impact not only on patients' health and well-being but also on their surrounding environment. The costs of the disease's management remain large for individuals and society. While literature on the economic impact of schizophrenia is abundant, few studies have focused on its humanistic burden. This does not only concern patients, but also caregivers, relatives, neighbours and others in a patient's daily life. This burden appears through several dimensions, including treatment side effects and the impact on caregivers and features of the patient's environment. The aim of this review is to consider, compile and describe the humanistic burden of schizophrenia as documented in the literature. Materials and methods We conducted a literature review assessing the worldwide disease burden of schizophrenia, taking into account all humanistic burden topics. The search considered several databases, including Embase, Medline, Cochrane Library, The German Institute of Medical Documentation and Information (DIMDI) and the ISPOR conference websites. Results The search identified 200 literature reviews, covering several dimensions of humanistic burden and documenting many issues. Main findings included the high death rates that may be explained by long-lasting negative health habits, disease- and treatment-related metabolic disorders, and consequent increased frequencies of cardiovascular diseases. Co-existing depression was found to have adverse consequence on the course of schizophrenia progression, morbidity and mortality. Cognitive impairment also adds to the burden of schizophrenia. Social impairment is worsened by underestimated stigmatisation and lack of corresponding awareness within the professional and social spheres. Finally, caregiver burden was found to be considerable. Discussion Humanistic burden among patients with schizophrenia is substantial potentially impacted by co-morbid depressive symptoms, caregiver burden and cognitive impairment. Effects of treatment on humanistic burden in addition to economic burden need to be explored in future trials

    Interaction of H2O with the Platinum Pt (001), (011), and (111) Surfaces: A Density Functional Theory Study with Long-Range Dispersion Corrections

    Get PDF
    Platinum is a noble metal that is widely used for the electrocatalytic production of hydrogen, but the surface reactivity of platinum toward water is not yet fully understood, even though the effect of water adsorption on the surface free energy of Pt is important in the interpretation of the morphology and catalytic properties of this metal. In this study, we have carried out density functional theory calculations with long-range dispersion corrections [DFT-D3-(BJ)] to investigate the interaction of H2O with the Pt (001), (011), and (111) surfaces. During the adsorption of a single H2O molecule on various Pt surfaces, it was found that the lowest adsorption energy (Eads) was obtained for the dissociative adsorption of H2O on the (001) surface, followed by the (011) and (111) surfaces. When the surface coverage was increased up to a monolayer, we noted an increase in Eads/H2O with increasing coverage for the (001) surface, while for the (011) and (111) surfaces, Eads/H2O decreased. Considering experimental conditions, we observed that the highest coverage was obtained on the (011) surface, followed by the (111) and (001) surfaces. However, with an increase in temperature, the surface coverage decreased on all the surfaces. Total desorption occurred at temperatures higher than 400 K for the (011) and (111) surfaces, but above 850 K for the (001) surface. From the morphology analysis of the Pt nanoparticle, we noted that, when the temperature increased, only the electrocatalytically active (111) surface remained

    Efficacy of HIV Postexposure Prophylaxis: Systematic Review and Meta-analysis of Nonhuman Primate Studies

    Get PDF
    Background. The efficacy of antiretrovirals as postexposure prophylaxis (PEP) to prevent viral acquisition was demonstrated in nonhuman primate models of human immunodeficiency virus (HIV) in the early 1990s. To complement the evidence base for efficacy of HIV PEP in humans, we systematically reviewed the published data on PEP efficacy across animal studies. Methods. PubMed, Web of Science, and Embase were searched from inception to 31 May 2014 for randomized and nonrandomized studies reporting seroconversions among uninfected animals exposed to HIV or simian immunodeficiency virus, irrespective of route of exposure. Seroconversion risk data were pooled using random-effects models, and associations explored through meta-regression. Results. Twenty-five studies (408 primates) were included for review. The risk of serconversion was 89% lower among animals exposed to PEP compared with those that did not receive PEP (odds ratio, 0.11 [95% confidence interval, .05-.23]). Heterogeneity was low (I2 = 0.0%). In meta-regression, a significant association was found between timing of PEP and seroconversion and the use of tenofovir compared with other drugs. Conclusions. This review provides further evidence of the protective benefit of PEP in preventing HIV acquisition, and the importance of initiating PEP as early as possible following virus exposur

    Impact of the Mk VI SkinSuit on skin microbiota of terrestrial volunteers and an International Space Station-bound astronaut.

    Get PDF
    Microgravity induces physiological deconditioning due to the absence of gravity loading, resulting in bone mineral density loss, atrophy of lower limb skeletal and postural muscles, and lengthening of the spine. SkinSuit is a lightweight compression suit designed to provide head-to-foot (axial) loading to counteract spinal elongation during spaceflight. As synthetic garments may impact negatively on the skin microbiome, we used 16S ribosomal RNA (rRNA) gene amplicon procedures to define bacterial skin communities at sebaceous and moist body sites of five healthy male volunteers undergoing SkinSuit evaluation. Each volunteer displayed a diverse, distinct bacterial population at each skin site. Short (8 h) periods of dry hyper-buoyancy flotation wearing either gym kit or SkinSuit elicited changes in the composition of the skin microbiota at the genus level but had little or no impact on community structure at the phylum level or the richness and diversity of the bacterial population. We also determined the composition of the skin microbiota of an astronaut during pre-flight training, during an 8-day visit to the International Space Station involving two 6-7 h periods of SkinSuit wear, and for 1 month after return. Changes in composition of bacterial skin communities at five body sites were strongly linked to changes in geographical location. A distinct ISS bacterial microbiota signature was found which reversed to a pre-flight profile on return. No changes in microbiome complexity or diversity were noted, with little evidence for colonisation by potentially pathogenic bacteria; we conclude that short periods of SkinSuit wear induce changes to the composition of the skin microbiota but these are unlikely to compromise the healthy skin microbiome
    corecore