46 research outputs found

    Garnet: Witness to the Evolution of Destructive Plate Boundaries

    Get PDF
    Thanks to its unique chemical and mechanical properties, garnet records evidence of rocks\u27 paths through the crust at tectonic plate boundaries. The compositions of garnet and coexisting mineral phases permit metamorphic pressure and temperature to be determined, while garnet\u27s compositional zoning allows the evolution of these parameters to be constrained. But careful study of garnet reveals far more, including the dehydration history of subducted oceanic crust, the depths reached during the earliest stages of continental collision, and the mechanisms driving heat and mass flow as orogens develop. Overall, chemical and textural characterization of garnet can be coupled with thermodynamic, thermoelastic, geochronologic, diffusion, and geodynamic models to constrain the evolution of rocks in a wide variety of settings

    Preservation of Garnet Growth Zoning and the Duration of Prograde Metamorphism

    Get PDF
    Chemically zoned garnet growth and coeval modification of this zoning through diffusion are calculated during prograde metamorphic heating to temperatures of up to 850°C. This permits quantification of how the preservation or elimination of zoning profiles in garnet crystals of a given size is sensitive to the specific burial and heating (P-T) path followed, and the integrated duration spent at high temperature (dT/dt). Slow major element diffusion in garnet at T 30 Myr at amphibolite-grade conditions, but small-scale (tens of micrometres) zoning features will be lost early in the prograde stage unless this is ‘rapid' (5 Myr for rocks reaching c. 600°C). Calculations indicate that preservation of unmodified growth compositions in even relatively large (up to 3 mm diameter) pelitic garnet crystals requires prograde and exhumational events to be <10 Myr for rocks reaching c. 600°C. This timescale can be 5 Myr for garnet in rocks reaching 650°C or hotter. It is likely, therefore, that most natural prograde-zoned crystals record compositions already partially re-equilibrated between the time of crystal growth and of reaching maximum temperature. However, a large T-t window exists within which crystals begin to lose their growth compositions but retain evidence of crystal-scale zoning trends that may still be useful for thermobarometry purposes. The upper limit of this window for 500 μm diameter crystals can be as much as several tens of millions of years of heating to c. 700°C. Absolute re-equilibration timescales can be significantly different for garnet growing in different rock compositions, with examples of a granodiorite and a pelite give

    Correlation of Growth and Breakdown of Major and Accessory Minerals in Metapelites from Campolungo, Central Alps

    Get PDF
    Regionally metamorphosed pelitic rocks at Campolungo, Central Alps, contain biotite, muscovite, garnet, staurolite, kyanite, and quartz, and the minor minerals tourmaline, plagioclase, chlorite, rutile, and ilmenite. Accessory allanite, apatite, monazite, potassium feldspar, xenotime, and zircon have also been identified. The bulk-rock chemical composition is similar to that of shales, and indicates that the protolith was deposited in an active continental margin setting. Element distribution maps, electron microprobe analyses and in situ UV-laser ablation inductively coupled plasma mass spectrometry data document a pronounced zoning in garnet and tourmaline porphyroblasts. Garnet displays a typical bell-shaped MnO zoning profile, with a maximum (∼3 wt %) in the euhedral core. Cores are also rich in Y and heavy rare earth elements (HREE; e.g. 2150 ppm Y). In their broad rim, all garnet crystals display a subhedral annulus (10-15 µm wide), which is distinctly enriched in Ca, Sr, Y, and HREE, and which probably resulted from the breakdown of allanite (at ∼550°C, ∼6·4 kbar). Another characteristic feature of garnet rims is their sinusoidal chondrite-normalized REE pattern, which may represent partial equilibration with a light REE-enriched medium, probably generated through the breakdown of metamorphic allanite. Similar REE patterns are exhibited by a Ca-poor internal zone (inside the annulus), which may represent an earlier partial equilibration following the breakdown of detrital monazite. The large tourmaline crystals exhibit an optically visible three-stage zoning, which comprises: a euhedral core; a continuously zoned inner rim with a prominent euhedral Ca-rich annulus; and an outer rim, which also displays a distinct Ca-rich annulus and is separated from the inner rim by a sutured boundary. This boundary represents a marked chemical discontinuity, characterized for example by a decrease in the Zn concentration from 250 ppm (inner rim) to 20 ppm (outer rim). This change in Zn content reflects staurolite growth, which started after resorption of the inner rim of tourmaline and after a major deformation event. This chemical and textural discontinuity coincides with a marked shift in δ18O, which increases by ∼0·8‰ across the inner rim-outer rim boundary. Our thermodynamic models suggest that resorption of the inner rim of tourmaline may be associated with small amounts (5-7 vol. %) of melt formed at ∼650°C and 8·5 kbar. By using detailed textural observations, major and trace element zoning patterns and thermodynamic data, it was possible to model the metamorphic evolution of these rocks in considerable detail and, specifically, to correlate the growth and breakdown of major and accessory mineral

    Sulphur and carbon cycling in the subduction zone mélange

    Get PDF
    Subduction zones impose an important control on the geochemical cycling between the surficial and internal reservoirs of the Earth. Sulphur and carbon are transferred into Earth’s mantle by subduction of pelagic sediments and altered oceanic lithosphere. Release of oxidizing sulphate- and carbonate-bearing fluids modifies the redox state of the mantle and the chemical budget of subduction zones. Yet, the mechanisms of sulphur and carbon cycling within subduction zones are still unclear, in part because data are typically derived from arc volcanoes where fluid compositions are modified during transport through the mantle wedge. We determined the bulk rock elemental, and sulphur and carbon isotope compositions of exhumed ultramafic and metabasic rocks from Syros, Greece. Comparison of isotopic data with major and trace element compositions indicates seawater alteration and chemical exchange with sediment-derived fluids within the subduction zone channel. We show that small bodies of detached slab material are subject to metasomatic processes during exhumation, in contrast to large sequences of obducted ophiolitic sections that retain their seafloor alteration signatures. In particular, fluids circulating along the plate interface can cause sulphur mobilization during several stages of exhumation within high-pressure rocks. This takes place more pervasively in serpentinites compared to mafic rocks

    How data visualisation using historical medical journals can contribute to current debates around antibiotic use and antimicrobial resistance in primary care

    Get PDF
    BackgroundThe early years of antibiotic use in primary care (c1950-1969) has received little attention. Medical journals provide a rich source for studying historic healthcare practitioners’ views and interests, with the potential to inform contemporary debate around issues of overuse and antimicrobial resistance. AimsPilot study to test the application of digital methods to interrogate historical medical journal data in relation to antibiotic use.Methods / ApproachMeta-data and scanned articles were extracted from the online British Journal of General Practice (BJGP) archive from inception (1953) to 1969. Searchable text was generated using an application called ABBYY optical character recognition, and Python used to generate data visualisations exploring (1) how BJGP changed during the period, (2) mentions of terms ‘antibiotic(s)’, ‘penicillin’, ‘resistance/resistant’ and mapping when and where they occurred.Results / EvaluationFrom 1953-1969, BJGP expanded in terms of number of annual issues (4 to 17) and annual pages (&lt;25 to &gt;1100). Heatmap visualisations were used to facilitate understanding of the frequency with which use of the term ‘antibiotic(s)’ occurred. By 1969 an article mentioning ‘antibiotic(s)’ was published monthly. Bigram searches found ‘treatment’ and ‘therapy’ to be the two most common terms that appeared with ‘antibiotic(s)’. The fourth and seventh most common terms were ‘resistant’ (first appearing in 1955) and ‘resistance’ (1962).ConclusionsThis pilot work shows that primary care publications increased considerably between 1953-1969. Articles on antibiotics featured frequently in relation to therapeutic intervention, and concerns around resistance occurred at an early stage. This approach provides new insights into how attitudes and behaviours around antibiotic use by primary care have evolved over time. It may also have the potential to inform study of the future use of antibiotics in primary care. <br/

    Thermobarometry of the Moine and Sgurr Beag thrust sheets, northern Scotland

    Get PDF
    In the Caledonides of northern Scotland temperatures of metamorphism (Tm) and deformation (Td) progressively increase structurally up section in the Moine thrust sheet at the foreland edge of the Scandian (mid Silurian) orogenic wedge. However, the thermal history of the structurally overlying, more hinterland positioned thrust sheets is less well known. This study focuses on determining Td and Tm for both the central/upper part of the Moine thrust sheet and the lower part of the overlying Sgurr Beag thrust sheets in the middle of the Northern Highlands Terrane. Preserved microstructures and quartz c-axis fabric opening angles in the Moine and Sgurr Beag thrust sheets imply Td of 460 °C to 605 °C ± 50 °C. Thermobarometry and pseudosection-based P-T constraints, indicate Tm of ∼550–680 °C at 4.8–7.2 kbar in the Moine thrust sheet and Tm of ∼620 °C at 5.6–7.7 kbar in the Sgurr Beag thrust sheet. Together, Td and Tm in the Moine and Sgurr Beag thrust sheets indicate that deformation continued after peak metamorphic conditions in the Sgurr Beag thrust sheet. Monazite and xenotime petrochronology show that Tm, and possibly Td, record Precambrian metamorphism. Peak metamorphism is associated with the Knoydartian orogenic event (840-720 Ma), with possible reworking during Scandian thrusting (430-425 Ma)

    Building a global alliance of biofoundries (vol 10, 2040, 2019)

    Get PDF
    The original version of this Comment contained errors in the legend of Figure 2, in which the locations of the fifteenth and sixteenth GBA members were incorrectly given as '(15) Australian Genome Foundry, Macquarie University; (16) Australian Foundry for Advanced Biomanufacturing, University of Queensland.'. The correct version replaces this with '(15) Australian Foundry for Advanced Biomanufacturing (AusFAB), University of Queensland and (16) Australian Genome Foundry, Macquarie University'. This has been corrected in both the PDF and HTML versions of the Comment

    Genome sequencing and analysis of the versatile cell factory Aspergillus niger CBS 513.88

    Get PDF
    The filamentous fungus Aspergillus niger is widely exploited by the fermentation industry for the production of enzymes and organic acids, particularly citric acid. We sequenced the 33.9-megabase genome of A. niger CBS 513.88, the ancestor of currently used enzyme production strains. A high level of synteny was observed with other aspergilli sequenced. Strong function predictions were made for 6,506 of the 14,165 open reading frames identified. A detailed description of the components of the protein secretion pathway was made and striking differences in the hydrolytic enzyme spectra of aspergilli were observed. A reconstructed metabolic network comprising 1,069 unique reactions illustrates the versatile metabolism of A. niger. Noteworthy is the large number of major facilitator superfamily transporters and fungal zinc binuclear cluster transcription factors, and the presence of putative gene clusters for fumonisin and ochratoxin A synthesis

    VEuPathDB: the eukaryotic pathogen, vector and host bioinformatics resource center

    Get PDF
    The Eukaryotic Pathogen, Vector and Host Informatics Resource (VEuPathDB, https://veupathdb.org) represents the 2019 merger of VectorBase with the EuPathDB projects. As a Bioinformatics Resource Center funded by the National Institutes of Health, with additional support from the Welllcome Trust, VEuPathDB supports &gt;500 organisms comprising invertebrate vectors, eukaryotic pathogens (protists and fungi) and relevant free-living or non-pathogenic species or hosts. Designed to empower researchers with access to Omics data and bioinformatic analyses, VEuPathDB projects integrate &gt;1700 pre-analysed datasets (and associated metadata) with advanced search capabilities, visualizations, and analysis tools in a graphic interface. Diverse data types are analysed with standardized workflows including an in-house OrthoMCL algorithm for predicting orthology. Comparisons are easily made across datasets, data types and organisms in this unique data mining platform. A new site-wide search facilitates access for both experienced and novice users. Upgraded infrastructure and workflows support numerous updates to the web interface, tools, searches and strategies, and Galaxy workspace where users can privately analyse their own data. Forthcoming upgrades include cloud-ready application architecture, expanded support for the Galaxy workspace, tools for interrogating host-pathogen interactions, and improved interactions with affiliated databases (ClinEpiDB, MicrobiomeDB) and other scientific resources, and increased interoperability with the Bacterial &amp; Viral BRC
    corecore