210 research outputs found

    A meta-analysis on progressive atrophy in intractable temporal lobe epilepsy Time is brain?

    Get PDF
    Objective: It remains unclear whether drug-resistant temporal lobe epilepsy (TLE) is associated with cumulative brain damage, with no expert consensus and no quantitative syntheses of the available evidence. Methods: We conducted a systematic review and meta-analysis of MRI studies on progressive atrophy, searching PubMed and Ovid MEDLINE databases for cross-sectional and longitudinal quantitative MRI studies on drug-resistant TLE. Results: We screened 2,976 records and assessed eligibility of 248 full-text articles. Forty-two articles met the inclusion criteria for quantitative evaluation. We observed a predominance of cross-sectional studies, use of different clinical indices of progression, and high heterogeneity in age-control procedures. Meta-analysis of 18/1 cross-sectional/longitudinal studies on hippocampal atrophy (n 5 979 patients) yielded a pooled effect size of r 5 20.42 for ipsilateral atrophy related to epilepsy duration (95% confidence interval [CI] 20.51 to 20.32; p , 0.0001; I 2 5 65.22%) and r 5 20.35 related to seizure frequency (95% CI 20.47 to 20.22; p , 0.0001; I 2 5 61.97%). Sensitivity analyses did not change the results. Narrative synthesis of 25/3 crosssectional/longitudinal studies on whole brain atrophy (n 5 1,504 patients) indicated that .80% of articles reported duration-related progression in extratemporal cortical and subcortical regions. Detailed analysis of study design features yielded low to moderate levels of evidence for progressive atrophy across studies, mainly due to dominance of cross-sectional over longitudinal investigations, use of diverse measures of seizure estimates, and absence of consistent age control procedures. Conclusions: While the neuroimaging literature is overall suggestive of progressive atrophy in drug-resistant TLE, published studies have employed rather weak designs to directly demonstrate it. Longitudinal multicohort studies are needed to unequivocally differentiate aging from disease progression

    Human Learning of Hierarchical Graphs

    Full text link
    Humans are constantly exposed to sequences of events in the environment. Those sequences frequently evince statistical regularities, such as the probabilities with which one event transitions to another. Collectively, inter-event transition probabilities can be modeled as a graph or network. Many real-world networks are organized hierarchically and understanding how humans learn these networks is an ongoing aim of current investigations. While much is known about how humans learn basic transition graph topology, whether and to what degree humans can learn hierarchical structures in such graphs remains unknown. We investigate how humans learn hierarchical graphs of the Sierpi\'nski family using computer simulations and behavioral laboratory experiments. We probe the mental estimates of transition probabilities via the surprisal effect: a phenomenon in which humans react more slowly to less expected transitions, such as those between communities or modules in the network. Using mean-field predictions and numerical simulations, we show that surprisal effects are stronger for finer-level than coarser-level hierarchical transitions. Surprisal effects at coarser levels of the hierarchy are difficult to detect for limited learning times or in small samples. Using a serial response experiment with human participants (n=100100), we replicate our predictions by detecting a surprisal effect at the finer-level of the hierarchy but not at the coarser-level of the hierarchy. To further explain our findings, we evaluate the presence of a trade-off in learning, whereby humans who learned the finer-level of the hierarchy better tended to learn the coarser-level worse, and vice versa. Our study elucidates the processes by which humans learn hierarchical sequential events. Our work charts a road map for future investigation of the neural underpinnings and behavioral manifestations of graph learning.Comment: 22 pages, 10 figures, 1 tabl

    Kinetic control of the coverage of oil droplets by DNA-functionalized colloids

    Get PDF
    We report a study of reversible adsorption of DNA-coated colloids on complementary functionalized oil droplets. We show that it is possible to control the surface coverage of oil droplets using colloidal particles by exploiting the fact that, during slow adsorption, compositional arrest takes place well before structural arrest occurs. As a consequence, we can prepare colloid-coated oil droplets with a "frozen" degree of loading but with fully ergodic colloidal dynamics on the droplets. We illustrate the equilibrium nature of the adsorbed colloidal phase by exploring the quasi-two-dimensional phase behavior of the adsorbed colloids under the influence of depletion interactions and present simulations of a simple model that illustrates the nature of the compositional arrest and the structural ergodicity.A.C. acknowledges support from the ETN-COLLDENSE (H2020-MCSA-ITN-2014, grant no. 642774). E.E. and J. Burelbach thank the Winton Programme for the Physics of Sustainability for the Pump Prime Grant and the scholarship award, respectively. D.J. thanks the Udayan Care-VCare grant, the Nehru Trust for Cambridge University, the Schlumberger Foundation’s Faculty for the Future Program, and Hughes Hall Santander Bursary Scholarship. Z.X. thanks the National University of Defense Technology Scholarship at Cambridge. A.S.N., D.E.P.P., and N.A.M.A. acknowledge financial support from the Portuguese Foundation for Science and Technology (FCT) (grants EXCL/FIS-NAN/ 0083/2012, UID/FIS/00618/2013, and IF/00255/2013). J. Brujic thanks the Materials Research Science and Engineering Center program of the National Science Foundation under Award DMR-1420073 and L. L. Pontani

    Transparent Films Made of Highly Scattering Particles

    Get PDF
    Today, colloids are widely employed in various products from creams and coatings to electronics. The ability to control their chemical, optical, or electronic features by controlling their size and shape explains why these materials are so widely preferred. Nevertheless, altering some of these properties may also lead to some undesired side effects, one of which is an increase in optical scattering upon concentration. Here, we address this strong scattering issue in films made of binary colloidal suspensions. In particular, we focus on raspberry-type polymeric particles made of a spherical polystyrene core decorated by small hemispherical domains of acrylate with an overall positive charge, which display an unusual stability against aggregation in aqueous solutions. Their solid films display a brilliant red color due to Bragg scattering but appear completely white on account of strong scattering otherwise. To suppress the scattering and induce transparency, we prepared films by hybridizing them with oppositely charged PS particles with a size similar to that of the bumps on the raspberries. We report that the smaller PS particles prevent raspberry particle aggregation in solid films and suppress scattering by decreasing the spatial variation of the refractive index inside the film. We believe that the results presented here provide a simple strategy to suppress strong scattering of larger particles to be used in optical coatings

    Unexpected stability of aqueous dispersions of raspberry-like colloids

    Get PDF
    Aqueous colloidal suspensions, both man-made and natural, are part of our everyday life. The applicability of colloidal suspensions, however, is highly limited by the range of conditions over which they are stable. Here, we report a novel type of highly monodisperse ‘raspberry’ colloids, which are prepared in a single-step synthesis that relies on simultaneous dispersion and emulsion polymerisation. The resulting raspberry colloids behave almost like hard spheres. In aqueous solutions such prepared raspberries show unprecedented stability against aggregation over large variations of added salt concentrations without addition of surfactants or other stabilisers. We present simple DLVO-calculations performed on raspberries and smooth colloids showing that this stability results from our raspberries’ unique morphology preventing salt-induced colloidal aggregation, which extends our understanding of colloidal stability against salting. Our calculations are supported by salting experiments using a variety of salts and differently sized colloids with varying ‘roughness’. Further, the raspberies’ stability facilitates the formation of superspheres and thin films in which the raspberry colloids self-assemble into hexagonally close-packed photonic crystals with exquisite reproducibility.Y.L. thanks the CSC Cambridge scholarship for financial support. A.C. thanks D. Frenkel for discussions and acknowledges the ETN-COLLDENSE (H2020-MCSA-ITN-2014, Grant No. 642774). S.V. acknowledges the BBSRC David Phillips fellowship (BB/K014617/1), the European Research Council (ERC-2014-STG H2020 639088) and B. Frka-Petesic for discussions. G.G. thanks the Engineering and Physical Sciences Research Council (EPSRC, 1525292), V.E.J. the European Commission (Marie Curie Fellowship LODIS, 701455), J.L. the Marie Curie FP7 SASSYPOL ITN (607602) and M.K. EPSRC (EP/L027151/1) for financial support. E.E., Y.L. and S.V. thank the Winton Programme for the Physics of Sustainability

    Naming fMRI predicts the effect of temporal lobe resection on language decline

    Get PDF
    Objective: To develop language functional MRI (fMRI) methods that accurately predict postsurgical naming decline in temporal lobe epilepsy (TLE). Methods: Forty‐six patients with TLE (25 left) and 19 controls underwent two overt fMRI paradigms (auditory naming and picture naming, both with active baseline conditions) and one covert task (verbal fluency). Clinical naming performance was assessed preoperatively and 4 months following anterior temporal lobe resection. Preoperative fMRI activations were correlated with postoperative naming decline. Individual laterality indices (LI) were calculated for temporal (auditory and picture naming) and frontal regions (verbal fluency) and were considered as predictors of naming decline in multiple regression models, along with other clinical variables (age at onset of seizures, preoperative naming scores, hippocampal volume, age). Results: In left TLE patients, activation of the left posterior inferior temporal gyrus during auditory naming and activation of left fusiform gyrus during picture naming were related to greater postoperative naming decline. Activation LI were the best individual predictors of naming decline in a multivariate regression model. For picture naming, an LI of higher than 0.34 gave 100% sensitivity and 92% specificity (positive predictive value (PPV) 91.6%). For auditory naming, a temporal lobe LI higher than 0.18 identified all patients with a clinically significant naming decline with 100% sensitivity and 58% specificity (PPV: 58.3%). No effect was seen for verbal fluency. Interpretation: Auditory and picture naming fMRI are clinically applicable to predict postoperative naming decline after left temporal lobe resection in individual patients, with picture naming being more specific

    ILAE neuroimaging task force highlight: Subcortical laminar heterotopia

    Get PDF
    The ILAE Neuroimaging Task Force publishes educational case reports that highlight basic aspects of neuroimaging in epilepsy consistent with the ILAE's educational mission. Subcortical laminar heterotopia, also known as subcortical band heterotopia (SBH) or “double cortex,” is an intriguing and rare congenital malformation of cortical development. SBH lesions are part of a continuum best designated as agyria-pachygyria-band-spectrum. The malformation is associated with epilepsy that is often refractory, as well as variable degrees of developmental delay. Moreover, in an increasing proportion of cases, a distinct molecular-genetic background can be found. Diagnosing SBH can be a major challenge for many reasons, including more subtle lesions, and “non-classic” or unusual MRI-appearances. By presenting an illustrative case, we address the challenges and needs of diagnosing and treating SBH patients in epilepsy, especially the value of high-resolution imaging and specialized MRI-protocols
    • 

    corecore