70 research outputs found

    SSDSS IV MaNGA - Properties of AGN host galaxies

    Full text link
    We present here the characterization of the main properties of a sample of 98 AGN host galaxies, both type-II and type-I, in comparison with those of about 2700 non-active galaxies observed by the MaNGA survey. We found that AGN hosts are morphologically early-type or early-spirals. For a given morphology AGN hosts are, in average, more massive, more compact, more central peaked and rather pressurethan rotational-supported systems. We confirm previous results indicating that AGN hosts are located in the intermediate/transition region between star-forming and non-star-forming galaxies (i.e., the so-called green valley), both in the ColorMagnitude and the star formation main sequence diagrams. Taking into account their relative distribution in terms of the stellar metallicity and oxygen gas abundance and a rough estimation of their molecular gas content, we consider that these galaxies are in the process of halting/quenching the star formation, in an actual transition between both groups. The analysis of the radial distributions of the starformation rate, specific star-formation rate, and molecular gas density shows that the quenching happens from inside-out involving both a decrease of the efficiency of the star formation and a deficit of molecular gas. All the intermediate data-products used to derive the results of our analysis are distributed in a database including the spatial distribution and average properties of the stellar populations and ionized gas, published as a Sloan Digital Sky Survey Value Added Catalog being part of the 14th Data Release: http://www.sdss.org/dr14/manga/manga-data/manga-pipe3d-value-added-catalog/Comment: 48 pages, 14 figures, in press in RMxA

    Overexpression of cathepsin f, matrix metalloproteinases 11 and 12 in cervical cancer

    Get PDF
    BACKGROUND: Cervical carcinoma (CC) is one of the most common cancers among women worldwide and the first cause of death among the Mexican female population. CC progression shows a continuum of neoplastic transitions until invasion. Matrix metalloproteinases (MMPs) and cathepsins play a central role on the enhancement of tumor-induced angiogenesis, cell migration, proliferation, apoptosis and connective tissue degradation. MMPs -2 and -9 expression has been widely studied in cervical cancer. Nevertheless, no other metalloproteinases or cathepsins have been yet related with the progression and/or invasion of this type of cancer. METHODS: Three HPV18 CC cell lines, two HPV16 CC cell lines and three HPV16 tumor CC tissues were compared with three morphologically normal, HPV negative, cervical specimens by cDNA arrays. Overexpression of selected genes was confirmed by end point semiquantitative reverse transcription-PCR with densitometry. In situ hybridization and protein expression of selected genes was further studied by means of two tissue microarrays, one consisting of 10 HSIL and 15 CC and the other one of 15 normal cervical and 10 LSIL tissues. RESULTS: TIMP1, Integrins alpha 1 and 4, cadherin 2 and 11, Cathepsins F, B L2, MMP 9, 10 11 and 12 were upregulated and Cathepsin S, L, H and C, Cadherins 3 and 4, TIMP3, MMP 13, Elastase 2 and Integrin beta 8 were found to be downregulated by cDNA arrays. Endpoint RT-PCR with densitometry gave consistent results with the cDNA array findings for all three genes selected for study (CTSF, MMP11 and MMP12). In situ hybridization of all three genes confirmed overexpression in all the HSIL and CC. Two of the selected proteins were detected in LSIL, HSIL and CC by immunohistochemistry. CONCLUSION: Novel undetected CC promoting genes have been identified. Increased transcription of these genes may result in overexpression of proteins, such as CTSF, MMP11 and MMP12 which could contribute to the pathogenesis of CC

    GPR54 (KISS1R) Transactivates EGFR to Promote Breast Cancer Cell Invasiveness

    Get PDF
    Kisspeptins (Kp), peptide products of the Kisspeptin-1 (KISS1) gene are endogenous ligands for a G protein-coupled receptor 54 (GPR54). Previous findings have shown that KISS1 acts as a metastasis suppressor in numerous cancers in humans. However, recent studies have demonstrated that an increase in KISS1 and GPR54 expression in human breast tumors correlates with higher tumor grade and metastatic potential. At present, whether or not Kp signaling promotes breast cancer cell invasiveness, required for metastasis and the underlying mechanisms, is unknown. We have found that kisspeptin-10 (Kp-10), the most potent Kp, stimulates the invasion of human breast cancer MDA-MB-231 and Hs578T cells using Matrigel-coated Transwell chamber assays and induces the formation of invasive stellate structures in three-dimensional invasion assays. Furthermore, Kp-10 stimulated an increase in matrix metalloprotease (MMP)-9 activity. We also found that Kp-10 induced the transactivation of epidermal growth factor receptor (EGFR). Knockdown of the GPCR scaffolding protein, β-arrestin 2, inhibited Kp-10-induced EGFR transactivation as well as Kp-10 induced invasion of breast cancer cells via modulation of MMP-9 secretion and activity. Finally, we found that the two receptors associate with each other under basal conditions, and FRET analysis revealed that GPR54 interacts directly with EGFR. The stability of the receptor complex formation was increased upon treatment of cells by Kp-10. Taken together, our findings suggest a novel mechanism by which Kp signaling via GPR54 stimulates breast cancer cell invasiveness

    Microarray comparative genomic hybridization detection of chromosomal imbalances in uterine cervix carcinoma

    Get PDF
    BACKGROUND: Chromosomal Comparative Genomic Hybridization (CGH) has been applied to all stages of cervical carcinoma progression, defining a specific pattern of chromosomal imbalances in this tumor. However, given its limited spatial resolution, chromosomal CGH has offered only general information regarding the possible genetic targets of DNA copy number changes. METHODS: In order to further define specific DNA copy number changes in cervical cancer, we analyzed 20 cervical samples (3 pre-malignant lesions, 10 invasive tumors, and 7 cell lines), using the GenoSensor microarray CGH system to define particular genetic targets that suffer copy number changes. RESULTS: The most common DNA gains detected by array CGH in the invasive samples were located at the RBP1-RBP2 (3q21-q22) genes, the sub-telomeric clone C84C11/T3 (5ptel), D5S23 (5p15.2) and the DAB2 gene (5p13) in 58.8% of the samples. The most common losses were found at the FHIT gene (3p14.2) in 47% of the samples, followed by deletions at D8S504 (8p23.3), CTDP1-SHGC- 145820 (18qtel), KIT (4q11-q12), D1S427-FAF1 (1p32.3), D9S325 (9qtel), EIF4E (eukaryotic translation initiation factor 4E, 4q24), RB1 (13q14), and DXS7132 (Xq12) present in 5/17 (29.4%) of the samples. CONCLUSION: Our results confirm the presence of a specific pattern of chromosomal imbalances in cervical carcinoma and define specific targets that are suffering DNA copy number changes in this neoplasm

    DNA Methylation-Independent Reversion of Gemcitabine Resistance by Hydralazine in Cervical Cancer Cells

    Get PDF
    BACKGROUND: Down regulation of genes coding for nucleoside transporters and drug metabolism responsible for uptake and metabolic activation of the nucleoside gemcitabine is related with acquired tumor resistance against this agent. Hydralazine has been shown to reverse doxorubicin resistance in a model of breast cancer. Here we wanted to investigate whether epigenetic mechanisms are responsible for acquiring resistance to gemcitabine and if hydralazine could restore gemcitabine sensitivity in cervical cancer cells. METHODOLOGY/PRINCIPAL FINDINGS: The cervical cancer cell line CaLo cell line was cultured in the presence of increasing concentrations of gemcitabine. Down-regulation of hENT1 & dCK genes was observed in the resistant cells (CaLoGR) which was not associated with promoter methylation. Treatment with hydralazine reversed gemcitabine resistance and led to hENT1 and dCK gene reactivation in a DNA promoter methylation-independent manner. No changes in HDAC total activity nor in H3 and H4 acetylation at these promoters were observed. ChIP analysis showed H3K9m2 at hENT1 and dCK gene promoters which correlated with hyper-expression of G9A histone methyltransferase at RNA and protein level in the resistant cells. Hydralazine inhibited G9A methyltransferase activity in vitro and depletion of the G9A gene by iRNA restored gemcitabine sensitivity. CONCLUSIONS/SIGNIFICANCE: Our results demonstrate that acquired gemcitabine resistance is associated with DNA promoter methylation-independent hENT1 and dCK gene down-regulation and hyper-expression of G9A methyltransferase. Hydralazine reverts gemcitabine resistance in cervical cancer cells via inhibition of G9A histone methyltransferase

    Antibody-Mediated Growth Inhibition of Plasmodium falciparum: Relationship to Age and Protection from Parasitemia in Kenyan Children and Adults

    Get PDF
    BACKGROUND: Antibodies that impair Plasmodium falciparum merozoite invasion and intraerythrocytic development are one of several mechanisms that mediate naturally acquired immunity to malaria. Attempts to correlate anti-malaria antibodies with risk of infection and morbidity have yielded inconsistent results. Growth inhibition assays (GIA) offer a convenient method to quantify functional antibody activity against blood stage malaria. METHODS: A treatment-time-to-infection study was conducted over 12-weeks in a malaria holoendemic area of Kenya. Plasma collected from healthy individuals (98 children and 99 adults) before artemether-lumefantrine treatment was tested by GIA in three separate laboratories. RESULTS: Median GIA levels varied with P. falciparum line (D10, 8.8%; 3D7, 34.9%; FVO, 51.4% inhibition). The magnitude of growth inhibition decreased with age in all P. falciparum lines tested with the highest median levels among children \u3c4 years compared to adults (e.g. 3D7, 45.4% vs. 30.0% respectively, p = 0.0003). Time-to-infection measured by weekly blood smears was significantly associated with level of GIA controlling for age. Upper quartile inhibition activity was associated with less risk of infection compared to individuals with lower levels (e.g. 3D7, hazard ratio = 1.535, 95% CI = 1.012-2.329; p = 0.0438). Various GIA methodologies had little effect on measured parasite growth inhibition. CONCLUSION: Plasma antibody-mediated growth inhibition of blood stage P. falciparum decreases with age in residents of a malaria holoendemic area. Growth inhibition assay may be a useful surrogate of protection against infection when outcome is controlled for age

    Avicin D: A Protein Reactive Plant Isoprenoid Dephosphorylates Stat 3 by Regulating Both Kinase and Phosphatase Activities

    Get PDF
    Avicins, a class of electrophilic triterpenoids with pro-apoptotic, anti-inflammatory and antioxidant properties, have been shown to induce redox-dependant post-translational modification of cysteine residues to regulate protein function. Based on (a) the cross-talk that occurs between redox and phosphorylation processes, and (b) the role of Stat3 in the process of apoptosis and carcinogenesis, we chose to study the effects of avicins on the processes of phosphorylation/dephosphorylation in Stat3. Avicins dephosphorylate Stat3 in a variety of human tumor cell lines, leading to a decrease in the transcriptional activity of Stat3. The expression of Stat3-regulated proteins such as c-myc, cyclin D1, Bcl2, survivin and VEGF were reduced in response to avicin treatment. Underlying avicin-induced dephosphorylation of Stat3 was dephosphorylation of JAKs, as well as activation of protein phosphatase-1. Downregulation of both Stat3 activity and expression of Stat 3-controlled pro-survival proteins, contributes to the induction of apoptosis in avicin treated tumor cells. Based on the role of Stat3 in inflammation and wounding, and the in vivo inhibition of VEGF by avicins in a mouse skin carcinogenesis model, it is likely that avicin-induced inhibition of Stat3 activity results in the suppression of the pro-inflammatory and pro-oxidant stromal environment of tumors. Activation of PP-1, which also acts as a cellular economizer, combined with the redox regulation by avicins, can aid in redirecting metabolism from growth promoting anabolic to energy sparing pathways

    Amplified Genes May Be Overexpressed, Unchanged, or Downregulated in Cervical Cancer Cell Lines

    Get PDF
    Several copy number-altered regions (CNAs) have been identified in the genome of cervical cancer, notably, amplifications of 3q and 5p. However, the contribution of copy-number alterations to cervical carcinogenesis is unresolved because genome-wide there exists a lack of correlation between copy-number alterations and gene expression. In this study, we investigated whether CNAs in the cell lines CaLo, CaSki, HeLa, and SiHa were associated with changes in gene expression. On average, 19.2% of the cell-line genomes had CNAs. However, only 2.4% comprised minimal recurrent regions (MRRs) common to all the cell lines. Whereas 3q had limited common gains (13%), 5p was entirely duplicated recurrently. Genome-wide, only 15.6% of genes located in CNAs changed gene expression; in contrast, the rate in MRRs was up to 3 times this. Chr 5p was confirmed entirely amplified by FISH; however, maximum 33.5% of the explored genes in 5p were deregulated. In 3q, this rate was 13.4%. Even in 3q26, which had 5 MRRs and 38.7% recurrently gained SNPs, the rate was only 15.1%. Interestingly, up to 19% of deregulated genes in 5p and 73% in 3q26 were downregulated, suggesting additional factors were involved in gene repression. The deregulated genes in 3q and 5p occurred in clusters, suggesting local chromatin factors may also influence gene expression. In regions amplified discontinuously, downregulated genes increased steadily as the number of amplified SNPs increased (p<0.01, Spearman's correlation). Therefore, partial gene amplification may function in silencing gene expression. Additional genes in 1q, 3q and 5p could be involved in cervical carcinogenesis, specifically in apoptosis. These include PARP1 in 1q, TNFSF10 and ECT2 in 3q and CLPTM1L, AHRR, PDCD6, and DAP in 5p. Overall, gene expression and copy-number profiles reveal factors other than gene dosage, like epigenetic or chromatin domains, may influence gene expression within the entirely amplified genome segments

    Fifth European Dirofilaria and Angiostrongylus Days (FiEDAD) 2016

    Get PDF
    Peer reviewe

    NMR Studies of the Anticancer Drug Pepleomycin and Its Complexes with DNA.

    No full text
    [[sponsorship]]生物化學研究所[[note]]已出版;沒有審查制度;具代表
    corecore