7 research outputs found

    Noncommutative Electrodynamics

    Get PDF
    In this paper we define a causal Lorentz covariant noncommutative (NC) classical Electrodynamics. We obtain an explicit realization of the NC theory by solving perturbatively the Seiberg-Witten map. The action is polynomial in the field strenght FF, allowing to preserve both causality and Lorentz covariance. The general structure of the Lagrangian is studied, to all orders in the perturbative expansion in the NC parameter θ\theta. We show that monochromatic plane waves are solutions of the equations of motion to all orders. An iterative method has been developed to solve the equations of motion and has been applied to the study of the corrections to the superposition law and to the Coulomb law.Comment: 13 pages, 2 figures, one reference adde

    Null Deformed Domain Wall

    Get PDF
    We study null 1/4 BPS deformations of flat domain wall solutions (NDDW) in N=2, d=5 gauged supergravity with hypermultiplets and vector multiplets coupled. These are uncharged time-dependent configurations and contain as special case, 1/2 supersymmetric flat domain walls (DW), as well as 1/2 BPS null solutions of the ungauged supergravity. Combining our analysis with the classification method initiated by Gauntlett et al., we prove that all the possible deformations of the DW have origin in the hypermultiplet sector or/and are null. Here, we classify all the null deformations: we show that they naturally organize themselves into "gauging" (v-deformation) and "non gauging" (u-deformation). They have different properties: only in presence of v-deformation is the solution supported by a time-dependent scalar potential. Furthermore we show that the number of possible deformations equals the number of matter multiplets coupled. We discuss the general procedure for constructing explicit solutions, stressing the crucial role taken by the integrability conditions of the scalars as spacetime functions. Two analytical solutions are presented. Finally, we comment on the holographic applications of the NDDW, in relation to the recently proposed time-dependent AdS/CFT.Comment: 38 pages; minor changes, references added; text revised, minor changes, final version published in JHE

    Supersymmetric solutions of gauged five-dimensional supergravity with general matter couplings

    Full text link
    We perform the characterization program for the supersymmetric configurations and solutions of the N=1\mathcal{N}=1, d=5d=5 Supergravity Theory coupled to an arbitrary number of vectors, tensors and hypermultiplets and with general non-Abelian gaugins. By using the conditions yielded by the characterization program, new exact supersymmetric solutions are found in the SO(4,1)/SO(4)SO(4,1)/SO(4) model for the hyperscalars and with SU(2)Ă—U(1)SU(2)\times U(1) as the gauge group. The solutions also content non-trivial vector and massive tensor fields, the latter being charged under the U(1) sector of the gauge group and with selfdual spatial components. These solutions are black holes with AdS2Ă—S3AdS_2 \times S^3 near horizon geometry in the gauged version of the theory and for the ungauged case we found naked singularities. We also analyze supersymmetric solutions with only the scalars Ď•x\phi^x of the vector/tensor multiplets and the metric as the non-trivial fields. We find that only in the null class the scalars Ď•x\phi^x can be non-constant and for the case of constant Ď•x\phi^x we refine the classification in terms of the contributions to the scalar potential.Comment: Minor changes in wording and some typos corrected. Version to appear in Class. Quantum Grav. 38 page

    The supersymmetric solutions and extensions of ungauged matter-coupled N=1,d=4 supergravity

    Get PDF
    We find the most general supersymmetric solutions of ungauged N=1,d=4 supergravity coupled to an arbitrary number of vector and chiral supermultiplets, which turn out to be essentially pp-waves and strings. We also introduce magnetic 1-forms and their supersymmetry transformations and 2-forms associated to the isometries of the scalar manifold and their supersymmetry transformations. Only the latter can couple to BPS objects (strings), in agreement with our results.Comment: Some misprints and citations correcte

    BPS equations in N=2, D=5 supergravity with hypermultiplets

    Get PDF
    With the general aim to classify BPS solutions in N=2, D=5 supergravities interacting with an arbitrary number of vector, tensor and hypermultiplets, here we begin considering the most general electrostatic, spherical-symmetric BPS solutions in the presence of hypermultiplet couplings. We discuss the properties of the BPS equations and the restrictions imposed by their integrability conditions. We exhibit explicit solutions for the case of static BPS black-holes coupled to one (the so called universal) hypermultiplet.Comment: 20 pages, v3 some corrections performed; we thank A.Van Proeyen for the pointing ou
    corecore