1,366 research outputs found

    RR Lyrae variables in the globular cluster M3 (NGC5272). I. BVI CCD photometry

    Full text link
    New BVI CCD photometry is presented for 60 RR Lyrae variables in the globular cluster M3. Light curves have been constructed and ephemerides have been (re)-derived for all of them. Four stars (i.e. V29, V136, V155 and V209), although recognized as variables, had no previous period determinations. Also, the period derived for V129 is significantly different from the one published by Sawyer-Hogg (1973). Light curve parameters, i.e. mean magnitudes, amplitudes and rise-times, have been derived. The discussion of these results in the framework of the stellar evolution and pulsation theories will be presented in a forthcoming paper.Comment: 19 pages, latex, uses mn.sty, 12 encapsulated figures, to be published in MNRAS, text and figures also available at http://www.bo.astro.it/bap/BAPhome.html or via anonymous ftp at ftp://boas3.bo.astro.it/bap/files (bap98-12-textfig.ps

    Theoretical predictions for charm and bottom production at the LHC

    Get PDF
    We present predictions for a variety of single-inclusive observables that stem from the production of charm and bottom quark pairs at the 7 TeV LHC. They are obtained within the FONLL semi-analytical framework, and with two "Monte Carlo + NLO" approaches, MC@NLO and POWHEG. Results are given for final states and acceptance cuts that are as close as possible to those used by experimental collaborations and, where feasible, are compared to LHC data.Comment: 22 pages, 10 figure

    D^* production from e^+e^- to ep collisions in NLO QCD

    Get PDF
    Fragmentation functions for D mesons, based on the convolution of a perturbative part, related to the heavy quark perturbative showering, and a non-perturbative model for its hadronization into the meson, are used to describe D^* production in e^+e^- and ep collisions. The non-perturbative part is determined by fitting the e^+e^- data taken by ARGUS and OPAL at 10.6 and 91.2 GeV respectively. When fitting with a non perturbative Peterson fragmentation function and using next-to-leading evolution for the perturbative part, we find an epsilon parameter sensibly different from the one commonly used, which is instead found with a leading order fit. The use of this new value is shown to increase considerably the cross section for D^* production at HERA, suggesting a possible reconciliation between the next-to-leading order theoretical predictions and the experimental data.Comment: 20 pages, LaTeX2e, 8 Postscript figure

    Charmonium Production via Fragmentation at DESY HERA

    Get PDF
    The cross section for the photoproduction of large-p_T J/psi mesons at HERA is calculated at next-to-leading order, adopting a perturbative approach to describe the fragmentation of charm quarks and gluons into J/psi mesons. We treat the charm quark according to the massless factorization scheme, where it is assumed to be one of the active flavours inside the proton and the resolved photon. We present inclusive distributions in transverse momentum and rapidity, including the contributions due to direct and resolved photons. The importance of the colour-octet components of the J/psi wave function, which contribute to the fragmentation process, is emphasized. In addition to prompt J/psi production, we consider also the production of chi_{cJ} states followed by radiative decays to J/psi mesons, both in the colour-singlet and colour-octet channels.Comment: 32 pages (Latex), 12 figures (Postscript

    New Metallicities of RR Lyrae Stars in omega Centauri: Evidence for a Non He-Enhanced Metal-Intermediate Population

    Get PDF
    We present new spectroscopic metal abundances for 74 RR Lyrae stars in omega Cen obtained with FLAMES. The well-known metallicity spread is visible among the RR Lyrae variables. The metal-intermediate (MInt) RR Lyrae stars ([Fe/H] ~ -1.2) are fainter than the bulk of the dominant metal-poor population ([Fe/H] ~ -1.7), in good agreement with the corresponding zero-age horizontal branch models with cosmological helium abundance Y = 0.246. This result conflicts with the hypothesis that the progenitors of the MInt RR Lyrae stars correspond to the anomalous blue main-sequence stars, which share a similar metallicity but whose properties are currently explained by assuming for them a large helium enhancement. Therefore, in this scenario, the coexistence within the cluster of two different populations with similar metallicities ([Fe/H] ~ -1.2) and different helium abundances has to be considered.Comment: 9 pages, 4 figures, accepted for publication by ApJ

    Testing Quarkonium Production with Photoproduced J/ψ+γJ/\psi + \gamma

    Full text link
    I compute the leading color-octet contributions to the process γ+pJ/ψ+γ(+X)\gamma + p \to J/\psi + \gamma (+ X) within the non-relativistic QCD (NRQCD) factorization formalism. In the color-singlet model, J/ψ+γJ/\psi + \gamma can only be produced when the photon interacts through its structure function, while the color-octet mechanism allows for production of J/ψ+γJ/\psi + \gamma via direct photon-gluon fusion. Resolved photon processes can be easily be distinguished from direct photon processes by examining the fraction of the incident photon energy carried away by the J/ψJ/\psi in the event. Therefore, this process provides a conclusive test of the color-octet mechanism. J/ψ+γJ/\psi + \gamma production is particularly sensitive to the NRQCD matrix element which figures prominently in the fragmentation production of J/ψJ/\psi at large pp_{\perp} in hadron colliders. I also examine the predictions of the color evaporation model (CEM) of quarkonium production and find that this process can easily discriminate between the NRQCD factorization formalism and the CEM.Comment: uses Revtex, 12 pages, 4 EPS figures embedded using epsf.sty. Some references have been added. Version accepted for publication in Phys. Rev.

    Correlations of Globular Cluster Properties: Their Interpretations and Uses

    Get PDF
    Correlations among the independently measured physical properties of globular clusters (GCs) can provide powerful tests for theoretical models and new insights into their dynamics, formation, and evolution. We review briefly some of the previous work, and present preliminary results from a comparative study of GC correlations in the Local Group galaxies. The results so far indicate that these diverse GC systems follow the same fundamental correlations, suggesting a commonality of formative and evolutionary processes which produce them.Comment: An invited review, to appear in "New Horizons in Globular Cluster Astronomy", eds. G. Piotto, G. Meylan, S.G. Djorgovski, and M. Riello, ASPCS, in press (2003). Latex file, 8 pages, 5 eps figures, style files include

    Pulsation Period Changes as a Tool to Identify Pre-Zero Age Horizontal Branch Stars

    Full text link
    One of the most dramatic events in the life of a low-mass star is the He flash, which takes place at the tip of the red giant branch (RGB) and is followed by a series of secondary flashes before the star settles into the zero-age horizontal branch (ZAHB). Yet, no stars have been positively identified in this key evolutionary phase, mainly for two reasons: first, this pre-ZAHB phase is very short compared to other major evolutionary phases in the life of a star; and second, these pre-ZAHB stars are expected to overlap the loci occupied by asymptotic giant branch (AGB), HB and RGB stars observed in the color-magnitude diagram (CMD). We investigate the possibility of detecting these stars through stellar pulsations, since some of them are expected to rapidly cross the Cepheid/RR Lyrae instability strip in their route from the RGB tip to the ZAHB, thus becoming pulsating stars along the way. As a consequence of their very high evolutionary speed, some of these stars may present anomalously large period change rates. We constructed an extensive grid of stellar models and produced pre-ZAHB Monte Carlo simulations appropriate for the case of the Galactic globular cluster M3 (NGC 5272), where a number of RR Lyrae stars with high period change rates are found. Our results suggest that some -- but certainly not all -- of the RR Lyrae stars in M3 with large period change rates are in fact pre-ZAHB pulsators.Comment: Conference Proceedings HELAS Workshop on 'Synergies between solar and stellar modelling', Rome, June 2009, Astrophys. Space Sci., in the pres
    corecore