5,913 research outputs found

    A Lorentz-invariant look at quantum clock synchronization protocols based on distributed entanglement

    Full text link
    Recent work has raised the possibility that quantum information theory techniques can be used to synchronize atomic clocks nonlocally. One of the proposed algorithms for quantum clock synchronization (QCS) requires distribution of entangled pure singlets to the synchronizing parties. Such remote entanglement distribution normally creates a relative phase error in the distributed singlet state which then needs to be purified asynchronously. We present a fully relativistic analysis of the QCS protocol which shows that asynchronous entanglement purification is not possible, and, therefore, that the proposed QCS scheme remains incomplete. We discuss possible directions of research in quantum information theory which may lead to a complete, working QCS protocol.Comment: 5 pages; typeset in RevTe

    Collective excitations in liquid D2 confined within the mesoscopic pores of a MCM-41 molecular sieve

    Get PDF
    We present a comparative study of the excitations in bulk and liquid D2 confined within the pores of MCM-41. The material (Mobile Crystalline Material-41) is a silicate obtained by means of a template that yields a partially crystalline structure composed by arrays of nonintersecting hexagonal channels of controlled width having walls made of amorphous SiO2. Its porosity was characterized by means of adsorption isotherms and found to be composed by a regular array of pores having a narrow distribution of sizes with a most probable value of 2.45 nm. The assessment of the precise location of the sample within the pores is carried out by means of pressure isotherms. The study was conducted at two pressures which correspond to pore fillings above the capillary condensation regime. Within the range of wave vectors where collective excitations can be followed up (0.3<Q<3.0 A˚\AA&#8722;1), we found confinement brings forward a large shortening of the excitation lifetimes that shifts the characteristic frequencies to higher energies. In addition, the coherent quasielastic scattering shows signatures of reduced diffusivity.Comment: 6 page

    Three-dimensional theory for interaction between atomic ensembles and free-space light

    Full text link
    Atomic ensembles have shown to be a promising candidate for implementations of quantum information processing by many recently-discovered schemes. All these schemes are based on the interaction between optical beams and atomic ensembles. For description of these interactions, one assumed either a cavity-QED model or a one-dimensional light propagation model, which is still inadequate for a full prediction and understanding of most of the current experimental efforts which are actually taken in the three-dimensional free space. Here, we propose a perturbative theory to describe the three-dimensional effects in interaction between atomic ensembles and free-space light with a level configuration important for several applications. The calculations reveal some significant effects which are not known before from the other approaches, such as the inherent mode-mismatching noise and the optimal mode-matching conditions. The three-dimensional theory confirms the collective enhancement of the signal-to-noise ratio which is believed to be one of the main advantage of the ensemble-based quantum information processing schemes, however, it also shows that this enhancement need to be understood in a more subtle way with an appropriate mode matching method.Comment: 16 pages, 9 figure

    The CMS experiment workflows on StoRM based storage at Tier-1 and Tier-2 centers

    Get PDF
    Approaching LHC data taking, the CMS experiment is deploying, commissioning and operating the building tools of its grid-based computing infrastructure. The commissioning program includes testing, deployment and operation of various storage solutions to support the computing workflows of the experiment. Recently, some of the Tier-1 and Tier-2 centers supporting the collaboration have started to deploy StoRM based storage systems. These are POSIX-based disk storage systems on top of which StoRM implements the Storage Resource Manager (SRM) version 2 interface allowing for a standard-based access from the Grid. In this notes we briefly describe the experience so far achieved at the CNAF Tier-1 center and at the IFCA Tier-2 center

    Molecular Deuterion crystallitation under cuasi-1D confienment

    Get PDF
    ECNS 2015, Zaragoza (Spain), August 30th-September 4th 2015A particularly interesting aspect of Carbon Nanotubes is their use as nearly one-dimensional nano-containers. Apart of their possibilities for controlled chemistry in nano- fluidics devices new phenomena induced by confinement are also expected, such as liquid like ordered structures or exotic crystalline phases. Here, we present a series of neutron diffraction measurements (instrument D20, ILL, Grenoble) of molecular deuterium confined within Multiple Wall Carbon Nanotubes (MWCTNs). Bulk liquid D2 at its vapour pressure crystallises in an hcp structure at ~18.7 K. At low uptakes we have found a clear depression of the solidification temperature down to ~13.25 K. Interestingly, at the lowest uptake the diffraction pattern is consistent with the minimal fcc lattice compatible with a cylindrical symmetry.Peer Reviewe

    Anomaly in temperature dependence of thermal transport of two hydrogen-bonded glass-forming liquids

    Get PDF
    6 págs.; 3 figs.; PACS number s : 66.70. f, 63.50. x, 65.20. w, 65.60. aThe thermal conductivity of two molecular glasses (ethanol and 1-propanol) decrease with increasing temperature up to their glass transitions at Tg 97 and 98 K, respectively. Within their supercooled liquid phases, the conductivity increases with rising temperature up to a maximum which roughly coincides with the liquidus (or melting temperatures Tm 159 K and Tm 149 K, respectively). From there on, the conductivity decreases with increasing temperature, a behavior common to most liquids examined so far, exception made of liquid water. The origin of the rather different dependencies with temperature of thermal transport is understood as a competition between phonon-assisted and diffusive transport effects which are amenable to experiments using high resolution quasielastic neutron scattering and visible and ultraviolet Brillouin light-scattering spectroscopies. © 2007 The American Physical Society.Peer Reviewe

    Conditional quantum logic using two atomic qubits

    Full text link
    In this paper we propose and analyze a feasible scheme where the detection of a single scattered photon from two trapped atoms or ions performs a conditional unitary operation on two qubits. As examples we consider the preparation of all four Bell states, the reverse operation that is a Bell measurement, and a CNOT gate. We study the effect of atomic motion and multiple scattering, by evaluating Bell inequalities violations, and by calculating the CNOT gate fidelity.Comment: 23 pages, 8 figures in 11 file

    Stationary two-atom entanglement induced by nonclassical two-photon correlations

    Full text link
    A system of two two-level atoms interacting with a squeezed vacuum field can exhibit stationary entanglement associated with nonclassical two-photon correlations characteristic of the squeezed vacuum field. The amount of entanglement present in the system is quantified by the well known measure of entanglement called concurrence. We find analytical formulas describing the concurrence for two identical and nonidentical atoms and show that it is possible to obtain a large degree of steady-state entanglement in the system. Necessary conditions for the entanglement are nonclassical two-photon correlations and nonzero collective decay. It is shown that nonidentical atoms are a better source of stationary entanglement than identical atoms. We discuss the optimal physical conditions for creating entanglement in the system, in particular, it is shown that there is an optimal and rather small value of the mean photon number required for creating entanglement.Comment: 17 pages, 5 figure
    corecore