43 research outputs found

    Propiedades fotofísicas y fotoquímicas de pterinas en solución acuosa: fluorescencia, producción de especies reactivas de oxígeno y oxidación

    Get PDF
    La absorción de radiación electromagnética por parte de una molécula conduce a la formación de especies electrónicamente excitadas. Existen numerosas vías de desactivación de estos estados excitados, algunas de las cuales implican cambios químicos en la molécula y otras no. En aquellos casos en los cuales el exceso de energía presente en la molécula excitada se utiliza para promover una reacción química, se habla de un proceso fotoquímico Por el contrario, los casos donde no ocurren cambios químicos en la molécula son denominados procesos fotofísicos. Las pterinas son una familia de compuestos orgánicos heterocíclicos que están ampliamente distribuidos en los sistemas biológicos, desempeñando diversas funciones que se expondrán en detalle más adelante. Muchos de estos procesos son desencadenados por la luz, y han sido descriptos tanto en bacterias como en eucariotas. Es evidente que el conocimiento de las propiedades fotofísicas y fotoquímicas de las pterinas y compuestos relacionados permite una mejor comprensión de las reacciones fotoquímicas y de los procesos en los que participan. En los últimos años, hubo un notable interés sobre el estudio de las propiedades fisicoquímicas de estos compuestos, y se puede apreciar un marcado incremento de la información, publicada en literatura, acerca de sus propiedades fotoquímicas y fotofísicas. Sin embargo, todavía es necesario profundizar aun más en este sentido y seguir investigando, para poder establecer reglas generales en cuanto al comportamiento fisicoquímico general de las pterinas, y poder comprender con mayor detalle los procesos fotobiológicos en los que están involucrados. En este trabajo se presenta un estudio in vitro de las propiedades fotofísicas y fotoquímicas de un grupo de derivados pterínicos en solución acuosa y su dependencia con el pH. En particular, se optó por investigar el comportamiento que presentan estos compuestos al ser irradiados con luz UV-A (320-400 nm). Se utilizó este tipo de radiación UV porque es el tipo de radiación, proveniente del sol, que llega en mayor proporción a la superficie terrestre. Esto tiene una gran importancia desde el punto de vista fotobiológico y biomédico. Por otro lado, estos compuestos no absorben luz visible (400-700 nm), o lo hacen en muy baja proporción, y, por ende, son estables o muy poco sensibles a este tipo de radiación electromagnética. A continuación se mencionan los objetivos particulares: - Análisis espectroscopio: Análisis de los espectros de absorción. Estudio de los equilibrios ácido-base involucrados en el rango de pH comprendido entre 4 y 13. Estudio de las propiedades de los estados excitados a partir del análisis de los espectros de emisión y excitación. Determinación de los rendimientos cuánticos de fluorescencia y de los tiempos de vida de fluorescencia. Análisis de la influencia del pH sobre la emisión fluorescente. - Estudio de procesos de quenching de fluorescencia. Evaluación del efecto de diferentes aniones, sobre la emisión de las pterinas. Determinación de constantes de quenching. Estudio del efecto del pH sobre estos fenómenos. - Oxígeno singlete. Estudio de la capacidad de las pterinas para generar oxígeno singlete a partir de procesos de transferencia de energía. Determinación de rendimientos cuánticos de producción de oxígeno singlete y estudio del efecto del pH. Análisis de la capacidad de las pterinas para desactivar y/o reaccionar con oxígeno singlete. Determinación de las constantes de velocidad de quenching total y quenching químico. - Estudio de fotolisis de pterinas. Identificación de fotoproductos, evaluación de la influencia del pH. Se investigó la participación del O2 disuelto en el medio, en las reacciones químicas estudiadas. Se estudió la capacidad que tienen las pterinas de generar fotoquímicamente peróxido de hidrógeno. Se determinaron los rendimientos cuánticos de los distintos procesos fotoquímicos detectados. Se investigó el rol del oxígeno singlete en el mecanismo de las reacciones.Tesis digitalizada en SEDICI gracias a la Biblioteca Central de la Facultad de Ciencias Exactas (UNLP).Facultad de Ciencias Exacta

    UVA photoactivation of harmol enhances its antifungal activity against the phytopathogens Penicillium digitatum and Botrytis cinerea

    Get PDF
    Phytopathogenic fungi responsible for post-harvest diseases on fruit and vegetables cause important economic losses. We have previously reported that harmol (1-methyl-9H-pyrido[3,4-b]indol-7-ol) is active against the causal agents of green and gray molds Penicillium digitatum and Botrytis cinerea, respectively. Here, antifungal activity of harmol was characterized in terms of pH dependency and conidial targets; also photodynamic effects of UVA irradiation on the antimicrobial action were evaluated. Harmol was able to inhibit the growth of both post-harvest fungal disease agents only in acidic conditions (pH 5), when it was found in its protonated form. Conidia treated with harmol exhibited membrane integrity loss, cell wall disruption, and cytoplasm disorganization. All these deleterious effects were more evident for B. cinerea in comparison to P. digitatum. When conidial suspensions were irradiated with UVA in the presence of harmol, antimicrobial activity against both pathogens was enhanced, compared to non-irradiated conditions. B. cinerea exhibited a high intracellular production of reactive oxygen species (ROS) when was incubated with harmol in irradiated and non-irradiated treatments. P. digitatum showed a significant increase in ROS accumulation only when treated with photoexcited harmol. The present work contributes to unravel the antifungal activity of harmol and its photoexcited counterpart against phytopathogenic conidia, focusing on ROS accumulation which could account for damage on different cellular targets.Fil: Olmedo, Gabriela María. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Cerioni, Luciana. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Gonzalez, Maria Elisa. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Cabrerizo, Franco Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Volentini, Sabrina Inès. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; ArgentinaFil: Rapisarda, Viviana Andrea. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Tucumán. Instituto Superior de Investigaciones Biológicas. Universidad Nacional de Tucumán. Instituto Superior de Investigaciones Biológicas; Argentin

    Exploring chemical kinetics at home in times of pandemic: Following the bleaching of food dye allura red using a smartphone

    Get PDF
    In this communication, a remote experimental activity in chemical kinetics is described, taking into account the quantification based on the optical sensor of a smartphone. The objective pursued herein is to equip students with the appropriate tools and strategies required to empirically determine the parameters of the rate law including reaction orders, rate constant (k), frequency factor (A), and activation energy (Ea). Typical results of the proposed protocol are shown and discussed in the framework of the bleaching reaction of food dye allura red (RD40) and hypochlorite, as a representative example. A graphical approach of the concentration vs time data measured under the experimental condition where [RD40] ≪ [ClO−] (isolation method) suggests a first-order kinetics with respect to the dye. In addition, the analysis of the pseudo-first-order constant (kobs) shows a firstorder relationship with respect to ClO−. In addition, using the two-point form of the Arrhenius equation, values of 3.22 × 107 s/M and 44.55 kJ/mol were obtained for A and Ea, respectively. Interestingly, all the kinetic parameters (reaction orders, k, A, and Ea) are on the same order of magnitude as those previously reported in the literature and acquired with more sophisticated and accurate equipment. This experience provides evidence that it is possible to proceed with remote experimental activities to deepen the collection and analysis of kinetic data during a pandemic.Fil: Madriz Ruiz, Lorean Mercedes. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Cabrerizo, Franco Martín. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Vargas Balda, Ronald Eduardo. Universidad Nacional de San Martin. Instituto Tecnologico de Chascomus. - Consejo Nacional de Investigaciones Cientificas y Tecnicas. Centro Cientifico Tecnologico Conicet - la Plata. Instituto Tecnologico de Chascomus.; Argentin

    Photophysical properties of [(norharmane)Re(CO)3 (L)]+ complexes (L = bpy, phen or dppz). Redox behavior of the excited states and their interaction with Calf Thymus DNA

    Get PDF
    The photochemical and photophysical properties of [(nHo)Re(CO)3(L)]+ complexes, where nHo = 9H-pyrido[3,4-b]indole and L = 2,2′ bipyridine (bpy), 1,10 phenantroline (phen) or dipyridil[3,2-a:2′3′-c]phenazine (dppz) were investigated by Laser Flash Photolysis (LFF) and Pulse Radiolysis (PR) techniques. While complexes with L = bpy or phen show absorption transients compatible with MLCTRe→L excited states, [(nHo)Re(CO)3(dppz)]+ showed an excited state assignable to a dppz-centered, 3ππ*dppz. In aqueous solutions, the last complex does not generate any absorption transient. However, when Calf thymus DNA was added, the same absorption spectrum was obtained. These results suggest that this complex can intercalate into DNA. The species generated in either reductive or oxidative conditions in LFF experiments were compared with those obtained in PR. Also, the quenching rate constants (kq) of the excited states with MV2+ were calculated. The intercalation of the [(nHo)Re(CO)3(dppz)]+ into DNA, increases kq ∼100 times. This result is rationalized in terms of the conditions created by the intercalation using the biopolymer as a well-organized matrix.Fil: Maisuls, Iván. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Cabrerizo, Franco Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Lappin, Alexander G.. University of Notre Dame-Indiana; Estados UnidosFil: Ruiz, Gustavo Teodosio. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Ferraudi, Guillermo J.. University of Notre Dame-Indiana; Estados Unido

    Chemical and photochemical properties of chloroharmine derivatives in aqueous solutions

    Get PDF
    Thermal and photochemical stability (ΦR), room temperature UV-vis absorption and fluorescence spectra, fluorescence quantum yields (ΦF) and lifetimes (τF), quantum yields of hydrogen peroxide (ΦH2O2) and singlet oxygen (ΦΔ) production, and triplet lifetimes (τT) have been obtained for the neutral and protonated forms of 6-chloroharmine, 8-chloroharmine and 6,8-dichloroharmine, in aqueous media. When it was possible, the effect of pH and oxygen concentration was evaluated. The nature of electronic transitions of protonated and neutral species of the three investigated chloroharmines was established using Time-Dependent Density Functional Theory (TD-DFT) calculations. The impact of all the foregoing observations on the biological role of the studied compounds is discussed.Fil: Rasse Suriani, Federico Ariel Osvaldo. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Denofrio, Maria Paula. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Yañuk, Juan Gabriel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Gonzalez, Maria Micaela. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); ArgentinaFil: Wolcan, Ezequiel. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Seifermann, Marco. University of Mainz; AlemaniaFil: Erra Balsells, Rosa. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Centro de Investigaciones en Hidratos de Carbono. Universidad de Buenos Aires. Facultad de Ciencias Exactas y Naturales. Centro de Investigaciones en Hidratos de Carbono; ArgentinaFil: Cabrerizo, Franco Martín. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús). Universidad Nacional de San Martín. Instituto de Investigaciones Biotecnológicas. Instituto de Investigaciones Biotecnológicas "Dr. Raúl Alfonsín" (sede Chascomús); Argentin

    Síntesis y evaluación de las propiedades fotoquímicas y fotosensibilizadoras de complejos de transición con β-carbolinas como ligando

    Get PDF
    Las β-carbolinas (βCs) son una familia de alcaloides, derivados del 9H-pyrido[3,4-b]indol o norharmano (nHo), presentes en una amplia variedad de fuentes naturales. Las mismas presentan una heterogénea gama de actividades biológicas y farmacológicas, tales como anticancerígenos y antimicrobianos. Además, bajo irradiación UVA pueden provocar daño en el ADN. Recientemente se ha demostrado que la capacidad antiviral de estas drogas se incrementa por acción de la radiación UV-A (320-400 nm) [1]. Siendo que los complejos tricarbonilicos de Re(I) con ligandos polipiridínicos poseen una excelente estabilidad térmica, fotoquímica y pueden actuar como fotosensibilizadores, obtener un complejo de Re(I) con βCs como ligandos es de gran interés, ya que el desarrollo de complejos metálicos con ligandos bioactivos, nos ofrece la oportunidad de diseñar nuevos compuestos que puedan superar las limitaciones de los ligandos por separado. La ventaja que los mismos poseen frente a los complejos con β-carbolinas como ligando de otros metales de transición ya reportados [2], es que la configuración facial adoptada por los grupos CO evita otras posibles disposiciones espaciales de los ligandos. En este trabajo se presentan los resultados de la síntesis y caracterización de un complejo tricarbonílico de Re (I) con 2,2’ bipiridina y nHo como ligandos; [Re(CO)3(2,2’bpy)(nHo)]CF3SO3.La síntesis consistió en disolver en MeOH los compuestos precursores Re(CO)3(2,2’bpy)CF3SO3 (complejo obtenido anteriormente en nuestro laboratorio) y nHo, en proporción 1:1 y luego calentar a reflujo bajo atmósfera de N2. Eliminar el solvente y purificar el sólido mediante lavados con agua ácida (pH 3) y posterior recristalización. El complejo obtenido se caracterizó mediante DRX, UV-vis, FT-IR, RMN (1H y 13C), análisis elemental y ESI-MS. El análisis por DRX de monocristales permitió establecer y confirmar la estructura esperada (figura 1). El complejo está constituido por el metal central coordinado a los ligandos en un entorno octaédrico levemente distorsionado con los tres grupos CO dispuestos en posición facial y el nHo unido en forma monodentada a través del nitrógeno piridínico. Con esta información, y la obtenida por todas las demás técnicas utilizadas para caracterizar el complejo, es posible confirmar que el mismo se ha obtenido y purificado con éxito.Esta primera etapa del trabajo está basada en la obtención y caracterización de diferentes complejos de Re (I) con βCs, de los cuales se seleccionaran los más adecuados para continuar con los estudios fotoquímicos y fotosensibilizadores. En el primer año de este trabajo ya se han sintetizado y caracterizado 3 complejos con estas características.Facultad de Ciencias Exacta

    Albumin–Folate Conjugates for Drug‐targeting in Photodynamic Therapy

    Get PDF
    Photodynamic therapy (PDT) is based on the cytotoxicity of photosensitizers in the presence of light. Increased selectivity and effectivity of the treatment is expected if a specific uptake of the photosensitizers into the target cells, often tumor cells, can be achieved. An attractive transporter for that purpose is the folic acid receptor α (FRα), which is overexpressed on the surface of many tumor cells and mediates an endocytotic uptake. Here, we describe the synthesis and photobiological characterization of polar β‐carboline derivatives as photosensitizers covalently linked to folate‐tagged albumin as the carrier system. The particles were taken up by KB (human carcinoma) cells within <90 min and then co‐localized with a lysosomal marker. FRα antibodies prevented the uptake and also the corresponding conjugate without folate was not taken up. Accordingly, a folate‐albumin‐β‐carbolinium conjugate proved to be phototoxic, while the corresponding albumin–β‐carbolinium conjugates without FA were nontoxic, both with and without irradiation. An excess of free folate as competitor for the FRα‐mediated uptake completely inhibited the photocytotoxicity. Interestingly, the albumin conjugates are devoid of photodynamic activity under cell‐free conditions, as shown for DNA as a target. Thus, phototoxicity requires cellular uptake and lysosomal degradation of the conjugates. In conclusion, albumin–folate conjugates appear to be promising vehicles for a tumor cell targeted PDT.Facultad de Ciencias Exacta

    Photophysical properties of a β-Carboline Rhenium (I) complex: solvent effects on excited states and their redox reactivity

    Get PDF
    The photochemical and photophysical properties of a Re(I) tricarbonyl complex, ClRe(CO)3(nHo)2, where nHo = 9H-pyrido[3,4-b] indole (norharmane), were investigated in solution phase by a combination of steady state emission spectroscopy, laser flash photolysis (LFP) and pulse radiolysis (PR) techniques. These results allowed us to identify and study the reactivity of the β-carboline (nHo) Rhenium(I) complex main excited states. The absorption spectrum as well as the steady-state and time-resolved luminescence of the complex exhibits a marked dependence with the solvent properties. These experimentally observed results were corroborated by quantum chemical calculations, TD-DFT. The most important electronic transitions present in the spectrum in all solvents are MLLCTRe(CO)3→nHo1, nHo2 along with a mixture of ILnHo and LLCTCl→nHo transitions. The relationship between the dipole moment and the polarity of the solvent was rationalized in terms of the electron density inside and outside the complex. While the luminescence of the complex is mainly attributed to the emitting 1ILnHo state, in LFP experiments a MLCT excited state was also detected. The species generated in either reductive or oxidative conditions in LFP experiments were compared with those obtained in PR. Also, the quenching rate constant (kq) of the excited state with MV+2 was calculated. The excited state of the complex can efficiently generate singlet oxygen in acetonitrile yielding a ΦΔ = 0.25 ± 0.02. Optoacoustic measurements showed that, after photonic excitation, almost all the absorbed energy by the complex is released to the medium as prompt heat. The investigated photophysical and photochemical properties of ClRe(CO)3(nHo)2 are of significant importance in relation to the use of this β-carboline Rhenium(I) complex in several biomedical fields, such as photodynamic therapy and photoactivated chemotherapy as well as new alternative therapies such as regional hyperthermia.Instituto de Investigaciones Fisicoquímicas Teóricas y AplicadasCentro de Investigaciones Óptica
    corecore