29 research outputs found

    Amides do not always work: observation of guest binding in an amide-functionalised porous host

    Get PDF
    An amide-functionalised metal organic frame-work (MOF) material, MFM-136, shows a high CO2 uptake of 12.6 mmol g-1 at 20 bar and 298 K. MFM-136 is the first example of acylamide pyrimidyl isophthalate MOF without open metal sites, and thus provides a unique platform to study guest bind-ing, particularly the role of free amides. Neutron diffraction reveals that, surprisingly, there is no direct binding between the adsorbed CO2/CH4 molecules and the pendant amide group in the pore. This observation has been confirmed un-ambiguously by inelastic neutron spectroscopy. This suggests that introduction of functional groups solely may not neces-sarily induce specific guest-host binding in porous materials, but it is a combination of pore size, geometry, and functional group that leads to enhanced gas adsorption properties

    Analysis of high and selective uptake of CO2 in an oxamide-containing {Cu2(OOCR)4}-based metal-organic framework

    Get PDF
    The porous framework [Cu2(H2O)2L].4H2O.2DMA ((H¬4¬L = oxalylbis(azanediyl)diisophthalic acid; DMA = N,N-dimethylacetamide), denoted NOTT-125, is formed by connection of {Cu2(RCOO)4} paddlewheels with the isophthalate linkers in L4-. A single crystal structure determination reveals that NOTT-125 crystallises in monoclinic cell with a = 27.9161(6) Å, b = 18.6627(4) Å and c = 32.3643(8) Å, space group P2 (1)/c. The structure of this material shows fof topology, which can be viewed as the packing of two types of cages (Cage A and Cage B) in 3-dimensional space. Cage A is constructed by twelve {Cu2(OOCR)4} paddlewheels and six linkers to form an ellipsoid-shaped cavity approximately 24.0 Å along its long axis and 9.6 Å across the central diameter. Cage B consists of six {Cu2(OOCR)4} units and twelve linkers with a spherical diameter of 12.7 Å taking into account the van der Waals radii of the atoms. NOTT-125 incorporates oxamide functionality within the pore walls, and this, combined with high porosity in the desolvated NOTT-125a, is responsible for excellent CO2 uptake (40.1 wt% at 273 K and 1 bar) and selectivity for CO2 over CH4 or N2. Grand canonical Monte Carlo (GCMC) simulations show excellent agreement with the experimental gas isotherm data, and a computational study into the specific interactions and binding energies of both CO2 and CH4 with the linkers in NOTT-125 reveals a set of strong interactions between CO2 and the oxamide motif, which are not possible with a single amide

    Behavior of Constitutional Dynamic Networks: Competition, Selection, Self‐sorting in Cryptate Systems

    No full text
    Abstract Understanding dynamic systems is a crucial step toward the design of complex matter. Here, we aim to study the behavior of Constitutional Dynamic Networks (CDNs) in conditions of dynamic competition, taking cryptands and metal cations as a test bed. The CDNs of cryptates were analyzed by NMR spectroscopy. The experimental results were complemented by extensive numerical simulations, based on a large amount of thermodynamic and kinetic data available in the literature for cryptates. Although the CDN′s output is a result of the interplay between the individual stability constants of the complexes in a mixture, the overall effect may be governed by only one – the most thermodynamically stable member of a network. Significantly, these findings indicate that an increase in complexity (multiplicity and connectivity) of a system may, in conditions of dynamic competition, result in “simplexity”, i. e. a simplification of the output of the system
    corecore